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Abstract

Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function
modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all
three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a
glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl
group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of
prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based
algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein
sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring
matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked
glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-
glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-
glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current
understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using
information on predicted secondary structures and accessible surface area in various combinations with training features.
Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71%
(MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins
confirms the suitability of these models in predicting N- and O-glycosites in potential glycoproteins from aforementioned
organisms, with reasonably high confidence. A web server GlycoPP, implementing these models is available freely at http:/
www.imtech.res.in/raghava/glycopp/.
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Introduction

Glycosylation is a recently identified post-translational modifi-

cation of proteins in prokaryotes: Archaea and Bacteria [1,2]. A

glycan moiety is attached enzymatically to a protein by the process

of glycosylation. Glycosylation is known to influence biological

properties like activity, solubility, folding, conformation, stability,

half-life, and/or immunogenicity of different cellular proteins

thereby modulating the structure/function of these proteins for a

variety of cellular/extracellular functions in a living cell [3–5].

Owing to their involvement in host-pathogen interactions,

immunogenicity and in many other important cellular functions,

a number of bacterial and archaeal glycoproteins have been

characterized experimentally [6–10]. Determination of glycosite(s)

is one important aspect of glycoprotein characterization. Analysis

of glysosites and their neighboring sequence and structural

contexts may also provide important evolutionary insights and

understanding of acceptor specificities of the protein glycosylating

enzymes called glycosyltransferases (GTs) and oligosaccharyltrans-

ferases (OSTs), [2]. The experimental characterization of

glycosite(s) and the glycoproteins, however, could be difficult,

technically demanding, and time-consuming owing to the labile

nature of modification involved as well as lack of high-senstivity yet

cost-effective methods for glycoprotein detection. Therefore, the

computational algorithms/models to predict glycosites in protein

sequences are very useful in complementing and facilitating such

studies. A number of such algorithms have been developed to

predict glycosites in eukaryotic glycoproteins using different tools

of machine learning like Neural Network based (NetOglyc),

[11,12] Support Vector Machine (SVM) based (NetNglyc), [13],

Ensemble of SVMs (EnsembleGly), [14] and Random Forest

based [15]. All these existing tools are trained on eukaryotic

glycoprotein sequences. However, for non-availability of equiva-

lent methods, these tools are routinely used for analyzing

glycoproteomics data and potential glycosite analysis in prokary-

otic glycoproteins for both N- and O- type of glycosylation [16–

19]. In similar context, Dell and co-workers have discussed the

unsuitability of these existing glycosite prediction tools in correctly

predicting glycosites (especially O-glycosites), in most families of

characterized prokaryotic glycoproteins that included pilins,

flagellins, autotransporters and serine-rich proteins [20]. In this

study using a dataset of experimentally validated 107 N-linked and
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116 O-linked glycosites from archaeal and bacterial glycoproteins,

we have found that indeed these tools (as detailed in Table 1), fail

to provide reliable predictions for glycosites in prokaryotic

glycoproteins. Furthermore, protein glycosylation in prokaryotes

is much more versatile than in eukaryotes in terms of both

mechanisms involved and the types of glycans and linkages present

as discussed in references [20–22] & Table 2. Among archaea N-

glycosylation is believed to be widespread yet experimental

evidence exists only in case of phyla Crenarchaeota and Euryarchaeota

where it is mediated by an enzyme AglB and its homologues and

sugar is transferred on to NX(S/T)(where X?P) acceptor sequon

in an en-bloc fashion. Similarly, in bacteria N-glycosylation is

known and experimentally validated only in a few organisms

belonging to phylum Proteobacteria. In Proteobacteria both sequentially

(in cytoplasm, ex. Haemophilus influenzae) and en-bloc glycosylated (in

periplasm, ex. Campylobacter jejuni) proteins have been characterized

in different organisms. Similarly, experimental data on O-

glycosites is available only from four bacterial phyla namely,

Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria out of eleven

bacterial phyla where glycoproteins are known to exist. Interesting

novel ‘‘conserved sequences of amino acids around glycosites

(sequons)’’ like (D/E)X1NX(S/T)(where X1 & X?P) for N-

glycosylation and D(S/T)(A/I/L/V/M/T) for O-glycosylation

have been elucidated within these glycoproteins that are not yet

seen in eukaryotes [23,24]. A tool to map such sequons in amino

acid sequence(s) of protein/proteomes has recently been made

available by our group [6]. Further, an analysis of amino acid

sequences surrounding N-glycosites of available archaeal glyco-

proteins (10 at that time) by Abu-Qarn and co-workers has also

shown that archaeal N-glycosites are rarely surrounded by

aromatic residues that are in abundance at positions –2 and –1

preceding glycosylated Asn at postion 0 in eukaryotic N-glycosites

[25–27]. For these reasons, the development of separate and new

algorithms for prediction of glycosites in prokaryotes is of high

interest and need [20].

Therefore in this study, we have attempted to analyze the

sequence context, predicted secondary structure and surface

accessibility of the experimentally verified glycosites in the largest

available dataset of 107 N-linked glycosylated-residues (N-

glycosites) and 116 O-linked glycosylated-residues (O-glycosites)

from 59 prokaryotic glycoproteins retrieved from our recently

published database of experimentally characterized prokaryotic

glycoproteins, ProGlycProt [6]. In this study, we have developed a

number of SVM models using three types of features namely,

binary profile of patterns (BPP), composition profile of patterns

(CPP), and PSI-BLAST generated PSSM profile of patterns (PPP)

to recognize and differentiate glycosylated sequence contexts from

non-glycosylated contexts in prokaryotic glycoproteins. For the

reasons that mere presence of a consensus-sequon/pattern may

not always be sufficient for glycosylation to occur and that the

glycosites are predominantly situated on loops/accessible portions

of folded proteins in prokaryotes, we have employed predicted

secondary structure and surface accessibility features in combina-

tion with BPP, CPP and PPP for developing hybrid models

(Table 3), [21,28]. The best performing and significantly accurate

models were then evaluated against an independent dataset of

experimentally validated glycosites and finally implemented via

web server GlycoPP (Figure 1) made available through open access

at http:/www.imtech.res.in/raghava/glycopp/.

Methods

Dataset Generation
Source of data. The primary set consisted of 39 N-linked and

54 O-linked glycoproteins obtained from the first release

(July_2011) of ProGlycProt database [6]. For the reason that

number of experimentally validated proteins is not very high, all

the available N-linked and O-linked glycoprotein entries in

primary dataset have been taken in to account for this study.

However, entries containing only cysteine-linked (S-linked)

glycosites as well as all glyco-engineered protein/peptides have

been excluded from the primary set resulting into a total of 38 N-

linked and 48 O-linked glycoproteins for further consideration.

Some of these glycoproteins are N- as well as O-glycosylated.

These glycoproteins include a variety of important proteins like S-

layer proteins, flagellar proteins, pili/fimbrial proteins, lectins,

adhesions, glycosidases, Cytochrome hemoprotein, heparinase,

Chondroitinase as well as several known-unknown cytoplasmic,

membrane bound and exported proteins (Table 2). These

glycoproteins represent all types of known N-glycosylation in

prokaryotes representing organisms from phylum Crenarchaeota and

Euryarchaeota of Archaea and phylum Proteobacteria of Bacteria.

Similarly, this dataset represents all available validated examples of

O-glycosylated proteins from four phyla namely, Actinobacteria,

Bacteroidetes, Firmicutes and Proteobacteria of Bacteria. In Archaea no

experimentally validated data exists for O-glycosites, so far.

Table 1. An evaluation of performances of some of the well-known models for glycosylation prediction on prokaryotic
glycoproteins.

Type of Glycosylation Prediction Tools Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC (%)

N-linked NetNglyc1 0.5 81.75 10.16 34.41 20.11

0.6 50.79 42.68 45.43 20.06

0.7 15.87 76.02 55.65 20.09

0.9 0.79 98.37 65.32 20.03

EnsembleGly3 0.3 92.86 0.41 31.72 20.2

0.5 90.48 1.63 31.72 20.18

0.7 79.37 10.98 34.14 20.13

0.9 51.59 47.15 48.66 20.01

O-linked NetOglyc2 0 8.38 95.64 87.96 0.05

EnsembleGly3 0 9.5 93.37 86 0.03

Footnotes: (1: http://www.cbs.dtu.dk/services/NetNGlyc/, 2: http://www.cbs.dtu.dk/services/NetOGlyc-3.0/, 3: http://turing.cs.iastate.edu/EnsembleGly/).
doi:10.1371/journal.pone.0040155.t001

Prokaryotic Glycosylated-Residue Prediction
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Further, within these glycoproteins, at least 30 N-linked and 40 O-

linked glycoproteins have less than 40% sequence similarity to

each other as deduced from CD-HIT v 4.0 available at http://

www.bioinformatics.org/cd-hit/. From the primary dataset, 59

glycoproteins (16 archaeal and 43 bacterial) with higher number of

characterized glycosites were hand- picked to form main datasets

whereas remaining 27 (5 archaeal and 22 bacterial) glycoproteins

were used as independent datasets of N and O glycosites,

separately.

Main datasets. The Main datasets represent the training

datasets employed in profile generation and later machine

learning. The datasets contain 28 N-linked (overall sequence

similarity less than 70%) and 31 O-linked (overall sequence

similarity less than 90%) glycoproteins from prokaryotes. Using

CD-HIT it has been deduced that in the main datasets, at least 23

N-linked and 26 O-linked glycoproteins have less than 40%

sequence similarity to each other. From this set of glycoproteins,

all N-and O-glycosites were retrieved and segregated in to separate

datasets. All probable or predicted glycosites were excluded.

Finally, the main datasets contained well-annotated unambiguous

107 N-linked and 116 O-linked glycosites derived from 59

experimentally validated prokaryotic glycoproteins. The O-linked

glycosites (116) exclusively consisted of bacterial glycosites for

unavailability of experimentally validated archaeal O-glycosite(s)

[6]. To our knowledge, these are the most extensive datasets of

experimentally validated prokaryotic glycosites (and glycopro-

teins), employed to develop first glycosite prediction models

trained on and for prokaryotic protein sequences. These datasets

are further divided in to two subgroups as follows.

Balanced datasets derived from randomly selecting all

positive instances (positive training datasets) and equal number

of negative instances (negative training datasets) across the protein

lengths. Balanced datasets are useful in accelerating the machine

learning and in avoiding biases in machine learning that are

common in case of realistic dataset.

Realistic datasets contained all glycosylated/positive (107 N-

linked & 116 O-linked) and all non-glycosylated/negative (995 N-

linked & 2018 O-linked) sites from glycoprotein sequences.

Performance of SVM on realistic (unbalanced) datasets could

provide more confidence in predictions from real-time data where

usually the non-glycosylated residues are much more than the

glycosylated ones in a protein sequence.

Independent datasets. The independent balanced datasets

of 28 (10 N-linked & 17 O-linked) glycoproteins with experimen-

tally validated 19 N-glycosites and 61 O-glycosites (with equivalent

numbers of non-glycosylated sites) were used as test datasets in this

study for evaluating the models trained on main datasets. Within

these at least 7 N-linked and 14 O-linked glycoproteins show less

than 40% sequence similarity to each other.

Pattern Generation and Feature Calculations
Various overlapping symmetrical sequence patterns of resi-

dues length 21 that included central glycosylated residues were

constructed according to previous studies [14,15]. A sequence

pattern was considered positive if central residue was glycosy-

lated otherwise the same was assigned as a negative pattern. To

generate a pattern corresponding to the terminal residues in a

protein sequence of length L, dummy residues ‘‘X’’ in number

(L-1)/2 were added at both the termini of the protein [29,30].

Binary profile of patterns (BPP). Fixed length of 21

residues in sequence patterns was converted into binary form

according to the existing study [30]. Each residue of patterns was

represented by a vector of dimension 21 (e.g. Ala by

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; Cys by

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), which contained 20 ami-

no acids and one dummy amino acid ‘‘X’’.

Table 2. Experimentally characterized glycan linkages at known glycosites of bacteria and archaea.

Sugar linkage Class Example glycoproteins

N-LINKED GLYCANS/ARCHAEA

Glc-Asn Halobacteria Flagellin, Slg

bGalNAc- Asn, Halobacteria, Methanococci, Methanobacteria Thermoprotei Flagellin, Slg, Cytochrome subunit

N-LINKED GLYCANS/BACTERIA

Bac-Asn Epsilonproteobacteria AcrA, PEB3, CgpA, HisJ, ZnuA, jlpA etc.

GlcNAc-Asn Deltaproteobacteria HmcA

Hexose-Asn, dihexose-Asn, Glu-Asn,
Gal-Asn

Gammaproteobacteria Adhesins

O-LINKED GLYCANS/BACTERIA

Man-Ser/Thr Actinobacteria, Flavobacteria, Sphingobacteria Glycosidases, Cell surface lipoproteins,
Secreted antigens, Superoxide dismutase, Heparinase,
Chondroitinase etc.

Fucose Bacteroidia Putative cell division proteins, exported proteins, outer
membrane proteins etc.

b-GalNAc-Ser/Thr Bacilli Slg

b-D-Gal-Ser/Thr Bacilli Slg, SgsE, SgtA etc.

b-GlcNAc-Ser/Thr, HexNAc Bacilli Glycocin F, Flagellin

Bac/DATDH-Ser Betaproteobacteria Pilin, CcoP, CycB etc.

FucNAc-Ser Gammaproteobacteria Pilin

Rha-Ser/Thr, Deoxyhexose-Ser Gammaproteobacteria Flagellin

Footnotes: Detailed information about attached glycan and glycoproteins can be obtained from www.proglycprot.org).
doi:10.1371/journal.pone.0040155.t002

Prokaryotic Glycosylated-Residue Prediction
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Composition profile of patterns (CPP). Composition

profile of patterns is the percentage frequencies of each amino

acid in a fixed length sequence pattern. The fractions of all 20

natural amino acids of fixed length sequence patterns were

calculated using the following equation [30]:

Comp(i)~
Ri

N
|100

Where Comp(i) is the percent composition of amino acid residue of

type i; Ri is number of amino acid residues of type i, and N is the

total number of residues in the fixed length sequence pattern.

PSSM profile of patterns (PPP). In addition to composi-

tional information, PSSM provides important information of

evolutionary significance about residue conservation at a given

position in a protein sequence. The multiple sequence alignment

information in the form of position specific scoring matrix (PSSM)

has been used here to develop learning model where each

glycosylated protein sequence was first searched against ‘SWISS-

PROT’ database followed by generation of alignment profiles or

position specific scoring matrices (PSSM) using PSI-BLAST v

2.2.20 program (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/

blast+/LATEST/). Three iterations of PSI-BLAST were run for

each protein with cut off e-value 0.001. We have normalized each

Table 3. An analysis of experimentally observed secondary structures in prokaryotic glycosites.

Protein Name (Source
organism) PDB ID

Presence of glycan
in structure

Validated Glycosites
in full length protein
sequence

Position of Glycosites
in PDB entry sequence SS

N-Glycosylated Proteins

Tetrabrachion
(Staphylothermus marinus)

1YBK,
1FE6

– N44, N605, N641,
N685, N708, N1279,
N1402

N44 (N1279*) H1

Chondroitinase ABC
(Proteus vulgaris)

1HN0 – N282, N338, N345,
N515, N675, N856,
N963

N282, N963 & N675
N338, N345 & N515
N856

FR1 H1 B1

PotD (Escherichia coli) 1POT,
1POY

– N26, N62 N26
N62

FR3 FR1 (at beginning of
helix)

AcrA (Campylobacter jejuni) 2K32,
2K33
(NMR)

Heptasaccharide N123, N273 N42 (N123*) FR1

PEB3 (Campylobacter jejuni) 2HXW - N90 N90 FR1 (between helices)

HmcA (Desulfovibrio gigas) 1Z1N Trisaccharide (NAG,NAA,
any epimer of NAG),

N290 N261 FR2 (between beta-sheets)

O-Glycosylated Proteins

Chondroitinase-AC
(Pedobacter heparinus)

1CB8,
1HM2,
1HM3,
1HMU,
1HMW

Tetrasaccharide Man-
(Rha)-GlcUA-Xyl,

S328, S455 S328 S455 FR1 (just after helix)
FR1 (between beta-sheets)

Chondroitinase-B
(Pedobacter heparinus)

1DBG,
1DBO,
1OFL,
1OFM

Heptasaccharide galactose-
b(1–4)[galactose-a(1–3)]
(2-O-Me)fucose-b(1–4)
xylose-b (1–4)glucuronic
acid-a(1–2)[rhamnose-a
(1–4)]mannose-a(1-

S234 S234 FR1 (between beta-strands)

Heparinase II
(Pedobacter heparinus)

2FUQ,
2FUT

Tetrasaccharide Man-
(Rha)-GlcUA-Xyl (xylose-b
(1–4)glucuronic acid-a
(1–2)[rhamnose-a(1–4)]
mannose-a(1-

T134 T134 H3

Fimbrial protein
(Neisseria gonorrhoeae)

2HI2,
2HIL,
2PIL,
1AY2

Disaccharides a-D-
galactopyranosyl-(1R3)-2,
4-diacetamido-2,4-dideoxy-
b-D-glucopyranoside
(bacillosamine, Bac);
Gal-DADDGlc; and
GlcNAc-a1,3-Gal

S70 S63 H1 (before helix)

Glycocin F
(Lactobacillus plantarum)

2KUY
(NMR)

Two N-Acetylglucosamines S39 S18 FR3

Endo-b-N-acetylglucosaminidase F3
(Flavobacterium meningosepticum)

1EOM,
1EOK

- T88 T49 FR1

Footnotes: All crystal structures are obtained from www.rcsb.org. All structures are at a resolution of 1.4 Å or above.
Symbols used: - : No sugar detected, *: Corresponding position in full length protein sequence, F: flexible Regions with turns/loops/coils/bends or no assigned
secondary structure, H: helix, B: beta sheet, 1: Intra domain, 2: Interdomain, 3: no assigned domain.
doi:10.1371/journal.pone.0040155.t003
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value range between 0 to 1 using sigmoid function by following

equation, where val is the PSSM score and Val is its normalized

value [29–31]:

Val~
1

1z(2:7182){val

Secondary structure information. For this study, the

secondary structure (SS) information (coil/helix/sheets) for glyco-

sylated residue and its sequence context was obtained using

webserver PSIPRED v 3.21 available at http://bioinfadmin.cs.ucl.

ac.uk/downloads/psipred/[32].

Surface accessibility information. The accessible surface

area (ASA) is the surface area of a protein that is accessible to

another protein or ligand(s). For our analysis, the average

accessible surface area values of each amino acid were predicted

from Sarpred available at www.imtech.res.in/raghava/sarpred/

[33].

Support Vector Machine (SVM) Algorithm and Evaluation
Models

The SVM is a supervised machine-learning technique based on

the structural risk minimization principle [34]. In this study, we

have used freely available SVMlight classifier v 6.01 (http://

svmlight.joachims.org/) where we could adjust the parameters and

kernel (linear, polynomial, radial basis function, sigmoid) func-

tions. The advantage of SVM over other machine learning

techniques is that it can be trained on small dataset (as in this

study) with minimum over-optimization. SVM based approach

has been successfully employed in developing both N- and O-

glycosylation prediction tools for mammalian glycoproteins in past

[13,14]. Using different sequence properties like identity and

position of residues (BPP), percentage composition of residues

(CPP), residue conservation information (PSSM) along with

structural features like secondary structure and surface accessibility

several SVM classifiers have been trained and optimized for this

study. Our group has successfully used one or more of these

features in predicting GTP interacting residues, Mannose

interacting residues, in predicting Cyclin protein sequences and

in identification of conformational B-cell Epitopes from primary

sequences of proteins, previously [29,30,35,36]. In this study, a 5-

fold cross-validation procedure has been used to develop the

prediction model, where five subsets were constructed randomly

from the main datasets. At a given point of time, the models were

trained on four sets of the training dataset and the performance

was measured on the remaining fifth set. This process is repeated

five times in such a way that each set was used once for testing.

The final performance was obtained by averaging the perfor-

mances of all five sets. The models thus obtained were evaluated

for performance using threshold dependent parameters namely,

sensitivity (Sn), Specificity (Sp), Accuracy (Acc), Matthews

correlation coefficient (MCC) as well as using threshold dependent

parameters Area Under Curve (AUC) values.

Evaluation parameters employed in this study are described

briefly as below:

Sensitivity is the percentage of glycosites that are correctly

predicted as glycosylated:

Sensitivity~
TP

TPzFN
|100

Specificity is the percentage of non-glycosylated sites that are

correctly predicted as non-glycosylated:

Specificity~
TN

TN~FP
|100

Accuracy is the percentage of correct prediction out of total

number of predictions:

Accuracy~
TPzTN

TPzFPzTNzFN
|100

Matthews correlation coefficient (MCC) is a measure of

both sensitivity and specificity. MCC value would range from 0

(indicating completely random prediction) to 1 (indicating perfect

prediction):

MCC~
(TP)(TN){(FP)(FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TPzFP�½TPzFN�½TNzFP�½TNzFN�

p |100

[Where TP- true positive; FN- false negative; TN- true negative;

FP- false positive]

Threshold selection is important criteria for checking the

consistency of prediction results. In our study, we have varied

threshold in the range of –1 to +1, normally we selected ‘‘0’’ as

default threshold to achieve balance between sensitivity and

specificity.

Area Under Curve (AUC) a threshold independent parameter

describes inherent trade-off between sensitivity and specificity.

Receiver Operating Characteristic (ROC) plots were drawn

between TP rate (sensitivity) and FP rate (1-specificity) using R-

package v 2.14.1 (http://www.r-project.org/) to calculate AUC

values. Finally, the best performing models in terms of accuracy &

MCC values were validated using an independent dataset of

prokaryotic glycoproteins for final implementation at GlycoPP

webserver (Figure 1).

Results

Prediction Performance of Some of the Existing Tools on
Prokaryotic Glycoproteins

In order to evaluate the suitability of models trained on

eukaryotic glycoproteins for predicting glycosites in prokaryotic

proteins, the proteins of main datasets were run on three of the

well-known prediction tools for prediction of N- and O-glycosites.

Against the experimentally validated glycoproteins of prokaryotes,

the performances of these tools were found very poor and are

detailed in Table 1. From this, we conclude that the methods that

are trained using eukaryotic glycoprotein are not optimum for

prediction of potential glycosites in bacterial and archaeal proteins.

This also suggests that the sequence or structural contexts around

prokaryotic glycosites could be different from what is known in

Figure 1. GlycoPP websever Schema. A flowchart of methodologies employed for development of GlycoPP webserver for prediction of N & O-
glycosites in prokaryotic protein sequences.
doi:10.1371/journal.pone.0040155.g001

Prokaryotic Glycosylated-Residue Prediction
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eukaryotic glycosites. This is logical as several OSTs with novel

mechanisms of sugar transfer on to the acceptor proteins are now

known in bacteria as well as archaea. This prompted us to develop

a number of new algorithms to recognize and differentiate

glycosylated and unglycosylated sequence contexts of known

glycosites of archaeal and bacterial proteins representing afore-

mentioned six different phyla. These algorithms are trained using

different input features and described in this study.

Sequence Context of Prokaryotic Glycosites
In an attempt to understand the general preferences for

different amino acids around prokaryotic glycosites as well as the

differences from the corresponding sequences in eukaryotes, we

have generated a number of one sample and two sample weblogos

(http://weblogo.berkeley.edu/& http://www.twosamplelogo.org/)

for N- and O-glycosites of archaeal and bacterial glycoproteins in an

organism specific, phylum specifc as well as domain specific

manner, respectively. The interesting existing knowledge as well

as our statistically significant observations for the purposes of a

prediction model are discussed here, briefly. Similar to eukaryotic

glycoproteins, the minimal sequon NX(S/T)(where X?P) is

essential for N-glycosylation in prokaryotic glycoproteins. For

example in all archaeal glycoproteins (Figure S1), [25], in HmcA

protein of Desulfovibrio [37], adhesin protein HMW1 of Haemophilus

influenzae and Actinobacillus pleuropneumoniae (where glycosylation is

sequential and mediated by a novel cytoplasmic glycosyltransferase,

HMW1C of family GT41, Figure S2), [38]. However, as known

already, the sequon is extended as (D/E)X1NX(S/T)(where X1 &

X?P) but not stringent in case of PglB (OST of Campylobacter)

mediated en bloc N-glycosylation in Campylobacter and Helicobacter

(Figure S2), [39]. As discussed before, the first-ever defined sequon

D(S/T)(A/I/L/V/M/T) for O-glycosites is indeed conserved

across available glycoproteins from three representative classes

including Bacteroidia, Flavobacteria and Sphingobacteria of phylum

Bacteroidetes (Figure S3). Further, the two-sample logos comparing

prokaryotic and eukaryotic N-and O- glycosites clearly illustrate the

differences in the amino acid preferences around these glycosites

(Figure 2), indicating a necessity for independent prediction tool for

prokaryotes. With respect to glycosylated Asn (if at position 0) the

positions at -1 and -2 have previously been stated to be enriched in

aromatic amino acids in eukaryotic N-glycosites [25–27]. However,

in prokaryotic N-glycosites instead we observe a marked preference

for polar residues like Asp/Glu/Thr/Asn and lysine at different

positions preceding glycosylated Asn (Logo C, Figure 2). Similarly,

at positions -2 and -6 occurrence of polar residues is higher around

NX(S/T) motif in validated N-glycosites of prokaryotes in contrast

to randomly selected equal number of NX(S/T) motifs with

unglycosylated Asn from prokaryotic glycoproteins (Logo A,

Figure 2). An analysis of eukaryotic N-glycosites by Pertescu and

co-workers had suggested a preference for small hydrophobic

residue at positions +1 and large hydrophobic residue at +3 in

eukaryotes, previously [27]. Similarly, in case of prokaryotic

glycoproteins hydrophobic residues are though present at +1

position yet preference for large or small residues are not very clear

(Figure 2, Figure S1), [25]. Furthermore, increased instances of Pro

near the glycosylated residues are not observed in bacterial and

archaeal glycoproteins as found in eukaryotic glycoproteins. Instead

Pro is one of the significantly depleted amino acids at +4 and +5

positions here [27]. Likewise, sequence surrounding all prokaryotic

O-glycosites (Figure 2) is different in having higher instances of Gly,

Ala, Val and a significant depletion of Pro at almost all positions

(except in mannosylated glycoproteins of Mycobacterium spp, Figure

S2), [8] in comparison to the eukaryotic mucin type O-glycosites

that are rich in Ser, Ala and Pro (Logo D, Figure 2), [12]. In

prokaryotic O-glycosites, apart from this general presence of small

hydrophobic amino acids around 10 residues on either sides of

glycosylated Ser/Thr residues (at position 0), a marked preference

for negatively charged Asp at -1 that in fact is a part of potential

sequon for O-glycosites in Bacteroidetes is observed (Logo B, Figure 2).

Structural Features of Prokaryotic Glycosites
Previous statistical analysis of all available crystal structures of

eukaryotic glycoproteins by Petrescu et al. had suggested that the

probability of finding N-glycosites was higher at positions where

there was a secondary structure change [27]. Upon analysis of 12

eukaryotic glycoproteins, Julenius et al had also concluded that O-

glycosites mainly occurred in coil region of mucin type of O-

glycosylated proteins [12]. The secondary structure and surface

accessibility of a residue therefore are considered important

criteria in prediction of glycosites in eukaryotes. Some of the

existing eukaryotic glycosite prediction models have employed

these features successfully [11,12]. Unlike eukaryotic N-glycosyl-

ation that is a co-translational event, the glycosylation is

considered a true post-translational modification in bacteria where

the folding state of a polypeptide/protein could dictate availability

of a sequon/site for glycan attachment on to a protein [21].

Although limited, yet most of the X-ray crystal structures and

NMR structures of bacterial glycoproteins (as listed at http://

www.proglycprot.org/CrystalStructure.aspx) show that the glyco-

sylated residues are indeed primarily located in surface-exposed

flexible loops/turns/bends that then should be accessible to

bacterial OSTs/GTs. The structural contexts for 20 glycosites (13

N- & 7 O-glycosites) extracted from available structures of N- and

O-glycoproteins of Archaea and Bacteria, reveal that at least 65%

(13 out of 20) of these glycosites are located in aforementioned

flexible regions and primarily in intra-domain region (Table 3).

Incidentally, at least three of the N-glycosylated proteins namely,

PotD of Escherichia coli, AcrA and PEB3 of Campylobacter jejuni are

glycosylated (in vitro/in vivo) by OST of Campylobacter (PglB) that has

previously been shown to transfer sugars post-translationally to

locally flexible structures in folded proteins [21,28,40]. Similarly,

glycosylated Ser/Thr residues in Endo-b-N-acetylglucosaminidase

F3 (Flavobacterium meningosepticum), Chondroitinase-AC and Chon-

droitinase-B (Pedobacter heparinus) lie in the similar loops/bends in

their respective crystal structures (Table 3).

Our analysis of the predicted secondary structure indicates that

55.92% of the validated glycosites are found in coils, 15.51% in

helix and 28.57% in sheets whereas non-validated glycosites or

their sequence contexts are found correspondingly less in coil

(47.23%), more in helix (24.42%) and almost equally in sheets

(28.35%). Similarly, 17.36% of validated O-glycosites are situated

in helix, 62.63% in coils and and 20.4% in sheets in contrast to

non-validated O-glycosites that are found more often in helix

(22.99%) and less in coils (53.98) and almost equally in sheets

(23.03), respectively (Figure 3). Similarly, predicted surface

accessibility profile of glycosylated Asn residues suggest them to

be much more surface accessible than the corresponding non-

glycosylated sequence contexts as shown in Figure 4. The

glycosylated Ser/Thr are again, more accessible (80%) compared

to the non-glycosylated residues (60%). To summarize, most of the

prokaryotic glycosites (both N as well as O) indeed seems to be

present in flexible and exposed regions. Further, not only the

central glycosylated-residues but also their surrounding residues

are highly accessible and surface exposed.

Prediction Performance of SVM Using Balanced Datasets
SVM models based on BPP, CPP and PSSM profiles are well

recognized for their notable performances in predicting a variety

Prokaryotic Glycosylated-Residue Prediction
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of motifs and interactions in biomolecules and have been used

effectively in the past for glycosites predictions as well [29–

31,35,36]. Accordingly, we have generated several SVM models

using BPP, CPP and PPP profiles as input features. The

performance measures were calculated at different thresholds of

SVM scores ranging from 21.0 to 1.0 and the best performing

thresholds were selected for further optimization. The prediction

of the N- glycosites were best achieved by the SVM models

developed using BPP profile achieving 79.91% accuracy and 0.60

MCC (Table 4) whereas O-glycosites were best predicted by SVM

model developed using PPP with 74.57% accuracy and 0.49 MCC

(Table 5). As discussed before, sequence features namely

secondary structure (SS) and accessible surface area (ASA) could

play an important role in correct predictions of sites of glycoslation

in a protein. Therefore, we have developed prediction models with

these features in following three combinations: (i) composition

profile of patterns with either secondary structure or surface

accessibility or both (ii) Binary profile of patterns with either

secondary structure or surface accessibility or both (iii) PPP with

either secondary structure or surface accessibility or both. In

general, inclusion of SS and SAS profiles in prediction models

helped improvise predictions (Table 4, Table 5, Figure S4). The

hybrid model of BPP+ASA proved as good as BPP+SS+ASA

improving the maximum MCC of prediction from 0.60 to 0.65

and accuracy of prediction from 79.91% to 82.24% for N-

glycosites (Table 4). Similarly, predictions of O-glycosites were

improvised slightly using the hybrid model (based on combination

of PPP+SS+ASA profiles) giving MCC of 0.48 and accuracy value

of 71.73% in comparison with PPP alone derived 73.28%

accuracy and 0.47 MCC (Table 5).

Prediction Performance of SVM Using Realistic Datasets
For any machine learning technique, learning of datasets is very

easy when both positive and negative instances are equal in

number. Nevertheless, in case of glycoproteins, the negative

instances could be much more than the positive instances in a

protein sequence. Therefore, in order to judge accuracy and

applicability of our SVM prediction schemes on realistic datasets

of users, in parallel we have calculated the performances of

aforementioned SVM models using realistic datasets. As was seen

in case of models optimized with balanced datasets, BPP based

SVM models performed better in case of realistic datasets and

could achieve a maximum MCC 0.48 and 0.51 with accuracy

value of 82.03% and 86.39% for prediction of N-glycosites using

solo feature based and hybrid models (BPP+ASA), respectively.

Similarly, O-glycosites could also be predicted with reasonably

high accuracy of 70.24% and 89.69% (with corresponding

maximum MCC values of 0.19 and 0.50) using CPP and

CPP+ASA based models, respectively. Surprisingly, while using

realistic datasets, predictions for O-glycosites were better with CPP

based models in contrast to PPP based models that fared well in

case of balanced datasets (Table 5, Table S1, Figure S4). Infact

inclusion of surface accessibility features in combination with CPP

in O-glycosites prediction scheme could enhance maximum MCC

Figure 2. Sequence contexts of prokaryotic glycosites. Two sample weblogos depicting enriched and depleted amino acids around
prokaryotic N-glycosites (logo A) and prokaryotic O-glycosites (logo B) in comparison to the percentage of these amino acids around non-
glycosylated prokaryotic N-glycosites and O-glycosites, respectively. Similarly, logos C and D provide an assessment of probabilities of amino acids
around prokaryotic N- and O-glycosites in comparison to probabilities around eukaryotic N- and O-glycosites, respectively. The datasets for
eukaryotic N- and O- glycosites for generation of weblogos is obtained from SWISS-PROT (2011 release).
doi:10.1371/journal.pone.0040155.g002
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Figure 4. Predicted Surface accessibility of prokaryotic glycosites. Average percentage of exposed and buried residues predicted in and
around N-glycosites (panel A) and O-glycosites (panel B) in prokaryotic glycoproteins. The graph suggests higher accessibility of glycosylated residues
on surface of a protein in comparison to non-glycosylated ones.
doi:10.1371/journal.pone.0040155.g004

Figure 3. Predicted secondary structures around prokaryotic glycosites. Average percentage of secondary structures predicted in and
around N-glycosites (panel A) and O-glycosites (panel B) in prokaryotic glycoproteins. The graph indicates a general likelihood of locating a
glycosylated residue in coils/turns in a protein.
doi:10.1371/journal.pone.0040155.g003
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value of prediction by 2.5 fold (Table S1, Figure S4) indicating that

surface accessibility alone could indeed be a useful criterion in

glycosites prediction models discussed here. Further, the observed

poorer performance of SVM with realistic datasets than with the

balanced datasets of course is due to the inherent learning biases of

realistic datasets. However, overall our SVM models optimized

with realistic datasets fared reasonably well in predicting both N-

and O- glycosites from realistic datasets (Table S1).

Prediction Performance on Independent Datasets
Finally, the performance of best-optimized models as discussed

before (Table 4, Table 5) were evaluated and compared with

performances of NetOGlyc v 3.0, NetNGlyc, EnsembleGly against

an independent set of experimentally verified prokaryotic glyco-

proteins (Table 6). Models developed and discussed in this study

not only provided reasonably high accuracy (86.84% for N-

glycosites with maximum MCC of 0.74 and 76.23% for O-

glycosites with maximum MCC value of 0.53, respectively) but

have convincingly outperformed performances of at least three of

the well-known existing glycosites prediction tools as detailed in

Table 6 in the context of prokaryotic glycosites prediction.

Description of Web-server
The overall best performing models described in Table 6 are

implemented in the form of a web-server GlycoPP available freely

at http://www.imtech.res.in/raghava/glycopp/. The common

gateway interface of GlycoPP is written using CGI/PERL script.

This server allows for prediction of N- and O-glycosites in

prokaryotic protein sequences. Predictions can be performed by

the users at any of the user-defined thresholds ranging from 21.0

Table 4. Combined performance statistics of SVM employing solo features and hybrid approaches in predicting N-glycosites
(using balanced dataset).

Feature Sensitivity (%) Specificity (%) Accuracy (%) MCC (%) AUC (%)

CPP 59.81 64.49 62.15 0.24 0.65019

CPP+SS 63.55 69.16 66.36 0.33 0.68731

CPP+ASA 71.03 69.16 70.09 0.40 0.77203

CPP+SS+ASA 70.09 67.29 68.69 0.37 0.71159

BPP 79.44 80.37 79.91 0.60 0.88322

BPP+SS 82.24 80.37 81.31 0.63 0.88453

BPP+ASA 84.11 81.31 82.71 0.65 0.89807

BPP+SS+ASA 84.11 80.37 82.24 0.65 0.88497

PPP 76.42 69.81 73.11 0.46 0.76833

PPP+SS 75.70 71.03 73.36 0.47 0.78880

PPP+ASA 77.57 71.03 74.30 0.49 0.78636

PPP+SS+ASA 75.70 71.96 73.83 0.48 0.79334

Footnotes: BPP- Binary profile of patterns, CPP- Composition profile of patterns, PPP- PSSM profile of patterns, MCC- Matthews correlation coefficient, AUC- Area under
curve, SS-secondary structure and ASA- Accessible surface area.
doi:10.1371/journal.pone.0040155.t004

Table 5. Combined performance statistics of SVM classifiers employing solo features and hybrid approaches in predicting O-
glycosites (using balanced dataset).

Feature Sensitivity (%) Specificity (%) Accuracy (%) MCC (%) AUC (%)

CPP 68.10 72.41 70.26 0.41 0.74071

CPP+SS 70.69 71.55 71.12 0.42 0.75743

CPP+ASA 67.24 75.00 71.12 0.42 0.75780

CPP+SS+ASA 72.41 75.00 73.71 0.47 0.76955

BPP 66.38 67.24 66.81 0.34 0.73023

BPP+SS 69.83 68.10 68.97 0.38 0.74160

BPP+ASA 77.59 61.21 69.40 0.39 0.71143

BPP+SS+ASA 65.52 72.41 68.97 0.38 0.73766

PPP 75.00 71.55 73.28 0.47 0.81250

PPP+SS 73.28 73.28 73.28 0.47 0.76806

PPP+ASA 74.14 71.55 72.84 0.46 0.77341

PPP+SS+ASA 77.59 69.83 73.71 0.48 0.76925

Footnotes: BPP- Binary profile of patterns, CPP- Composition profile of patterns, PPP- PSSM profile of patterns, MCC- Matthews correlation coefficient, AUC- Area under
curve, SS-secondary structure and ASA- Accessible surface area.
doi:10.1371/journal.pone.0040155.t005
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to 1.0 for optimizing SVM scores. Input is acceptable as single or

multiple sequences in standard FASTA format.

Discussion

In this study, we have developed new SVM based glycosites

prediction models trained on and at least for N- and/or -O-

glycosylated proteins belonging to six different archaeal and

bacterial phyla namely, Crenarchaeota, Euryarchaeota, Actinobacteria,

Bacteroidetes, Firmicutes and Proteobacteria. The overall best perform-

ing models are implemented at GlycoPP webserver available freely

to the users (Figure 1). Our approach is similar to the existing

models employed successfully for in silico identification of glycosites

in eukaryotic glycoproteins [13,14]. The webserver allows users to

identify probable sites of N- and O-glycosylation in proteins

belonging to or to the similar bacteria or archaea as described

above, much more confidently than possible with the existing tools

of similar nature. In this study, we observed that BPP models

(containing single sequence information) were more efficient in

discrimination of N-glycosylated and non-glycosylated sequences

irrespective of their training on balanced or realistic datasets for

the presence of a defined consensus-sequon NX(S/T) in all N-

glycosites. Whereas, in case of O-glycosylation, multiple sequence

information based PPP models performed better as the sole

classifying feature. Possibly, for the lack of a defined consensus-

sequon for most O-glycosites (except in phylum Bacteroidetes),

[6,24], PSSM derived profiles could well be more informative and

useful for O-glycosites prediction. In our study, average surface

accessibility emerged as a more useful criterion than secondary

structure around glycosylated residues in most of our hybrid

prediction approaches. The tool in its existing form would be

useful for both single protein and proteome scale analysis.

However, users are encouraged to supplement these results with

other complementary evidences like presence of signal peptides,

transmemebrane domains, sub-cellular localization of the proteins,

presence of certain OSTs or GTs in the genome of the organism to

indicate likely type and mode of glycosylation, known glycosylation

in a close homologue and available experimental data on type of

linkages, attached sugars etc., for best interpretation of the results

obtained and also to decipher the biological significance of the

same. The datasets used in this study are currently the largest and

the most extensive available, yet inclusion of more validated

sequences or features may further enhance the prediction

accuracy, in future.

Further, the preliminary information gleaned from various

organism-, phylum- and domain- specific weblogos of prokaryotic

glycoproteins, suggest that sequence context of bacterial and

archaeal N-glycosites not only differs from eukaryotic ones but

they may vary between archaea and bacteria as well (Figures S1).

In view of the understanding that the archaeal OST could be

evolutionarily closer to eukaryotic OST [41], it may be beneficial

to develop prediction tools separately for archaea and bacteria in

future, when sufficient experimental data is available. Similarly,

the approach could be extended to different phyla under domain

Bacteria where novel sequons for N- and O-glycosites seem to be

conserved with in a phylum. For example, preference for an acidic

residue at -2 position in sequon for N-glycosylation among

epsilonbacteria like Campylobacter and Helicobacter and novel O-

glycosylation sequon D(S/T)(A/I/L/V/M/T) in phylum Bacter-

oidetes (Figures S2, S3) indicate that glycan and/or acceptor

sequence specificities of OSTs/GTs could be conserved within a

close group of bacteria and archaea. Therefore, in future it will be

desirable to develop tools where prediction could be made taking

in to account the glycan and/or acceptor sequence specificities of

such individual protein glycosyltransferases of prokaryotes. How-

ever, as most of the OSTs involved in en-bloc N- and O-

glycosylation both in archaea and bacteria including AglB, PglB,

PglL and their homologues have been shown to have relaxed

glycan specificity, the correlation between acceptor sequence

specificity and glycan specificity of these enzymes may not be

straight (Table 2), [37,42,43]. In this context, it could be

speculated that in prokaryotes a complex inter-play of available

biosynthesis machinery of certain precursor sugars, corresponding

Table 6. Comparative performances of existing well-known glycosylation prediction tools and GlycoPP models on independent
dataset of prokaryotic glycoproteins.

Prediction of N-glycosites

Models (Threshold) NetNglyc1 (0.5) EnsembleGly3 (0.7)
GlycoPP-BPP
(20.1)

GlycoPP-CPP
(0.3)

GlycoPP-PPP
(20.2)

GlycoPP-
BPP+ASA

Sensitivity (%) 88.89 94.44 89.47 68.42 78.95 89.47

Specificity (%) 25.00 11.36 73.68 73.68 73.68 84.21

Accuracy (%) 43.55 35.48 81.58 71.05 76.32 86.84

MCC (%) 0.15 0.09 0.64 0.42 0.53 0.74

Prediction of O-glycosites

Models NetOGlyc2 (0.1) EnsembleGly3 (0.3) GlycoPP-BPP
(0.2)

GlycoPP-CPP
(0.2)

GlycoPP-PPP
(0)

GlycoPP-
PPP+ASA

Sensitivity (%) 100.00 6.67 72.13 72.55 77.05 81.97

Specificity (%) 3.19 93.05 73.77 68.18 70.49 70.49

Accuracy (%) 8.27 88.28 72.95 70.36 73.77 76.23

MCC (%) 0.04 20.00 0.46 0.41 0.48 0.53

Footnotes: 1: http://www.cbs.dtu.dk/services/NetNGlyc/, 2: http://www.cbs.dtu.dk/services/NetOGlyc-3.0/, 3: http://turing.cs.iastate.edu/EnsembleGly/, BPP- Binary
profile of patterns, CPP- Composition profile of patterns, PPP- PSSM profile of patterns, MCC- Matthews correlation coefficient, AUC- Area under curve, SS-secondary
structure and ASA- Accessible surface area.
doi:10.1371/journal.pone.0040155.t006
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glycans, presence of certain OSTs/GTs along with their fine tuned

specificities or subtle preferences towards given glycans and/or

acceptor sequences may define protein glycosylation under given

conditions.

Supporting Information
The various datasets used in this study are available in

downloadable format at http://www.imtech.res.in/raghava/

glycopp/suppli.html.

Supporting Information

Figure S1 Weblogos for archaeal N-glycosites (panel A) and

bacterial N-glycosites (panel B).

(TIF)

Figure S2 Weblogos depicting two sequons for bacterial N-

glycosites: (D/E)X1NX(S/T) in Campylobacter (panel A) and NX(S/

T) in Haemophilus (panel B). Panel D represents typical eukaryotic

mucin like sequence context around O-glycosites of mycobacterial

glycoproteins whereas O-glycosites in Campylobacter is Ser, Gly rich

as shown in panel C.

(TIF)

Figure S3 Conserved sequon D(S/T)A/I/L/V/M/T at O-

glycosites in glycoproteins belonging to all major representatives:

Bacteroides (panel A). Flavobacterium (panel B) and Paedobacter (panel

C) of phylum Bacteroidetes (panel D).

(TIF)

Figure S4 ROC plots for various hybrid models for prediction of

N-glycosites (panel A & B) and O-glycosites (panel C & D) using

balanced datasets and realistic datasets, respectively. The Area

Under Curve (AUC) depicts relative trade-offs between true

positives and false positives.

(TIF)

Table S1 Combined prediction performance of SVM employing

solo features and hybrid approaches (using realistic datasets).

(DOC)
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