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Abstract Since endo-symbiotic events occur, all genes of

mitochondrial aminoacyl tRNA synthetase (AARS) were

lost or transferred from ancestral mitochondrial genome

into the nucleus. The canonical pattern is that both cyto-

solic and mitochondrial AARSs coexist in the nuclear

genome. In the present scenario all mitochondrial AARSs

are nucleus-encoded, synthesized on cytosolic ribosomes

and post-translationally imported from the cytosol into the

mitochondria in eukaryotic cell. The site-based discrimi-

nation between similar types of enzymes is very chal-

lenging because they have almost same physico-chemical

properties. It is very important to predict the sub-cellular

location of AARSs, to understand the mitochondrial pro-

tein synthesis. We have analyzed and optimized the dis-

tinguishable patterns between cytosolic and mitochondrial

AARSs. Firstly, support vector machines (SVM)-based

modules have been developed using amino acid and

dipeptide compositions and achieved Mathews correlation

coefficient (MCC) of 0.82 and 0.73, respectively. Sec-

ondly, we have developed SVM modules using position-

specific scoring matrix and achieved the maximum MCC

of 0.78. Thirdly, we developed SVM modules using

N-terminal, intermediate residues, C-terminal and split

amino acid composition (SAAC) and achieved MCC of

0.82, 0.70, 0.39 and 0.86, respectively. Finally, a SVM

module was developed using selected attributes of split

amino acid composition (SA-SAAC) approach and

achieved MCC of 0.92 with an accuracy of 96.00%. All

modules were trained and tested on a non-redundant data

set and evaluated using fivefold cross-validation technique.

On the independent data sets, SA-SAAC based prediction

model achieved MCC of 0.95 with an accuracy of 97.77%.

The web-server ‘MARSpred’ based on above study is

available at http://www.imtech.res.in/raghava/marspred/.
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Introduction

In the process of evolution, most of the bacterial genes

present in the ancestral organellar genomes have been either

disappeared or transferred to the nucleus (Doolittle 1998).

In this process, all genes of mitochondrial AARSs were also

lost or shifted into the nucleus. The eukaryotic nucleus

genome codes two different sets of AARS for cytosol and

mitochondria. These mitochondrial AARSs are post-trans-

lationally imported into the mitochondria (Brindefalk et al.

2007). The function of AARSs is to precisely attach correct

amino acids with tRNAs containing the corresponding

anticodon (Berg 1961). There are twenty AARSs found in

maximum number of organisms and mainly each one is

specific for single amino acid (Rajbhandary 1997). The

translation of few but crucial protein-encoding genes,

remaining on the mitochondrial genome (Unseld et al.

1997), requires complete set of mitochondrial tRNA syn-

thetases in mitochondria where translation occurs. The

imported protein is guided through the import complexes by

a targeting sequence at the N-terminal part of the protein

(Baker et al. 2007). A study reported that both cytosolic and

mitochondrial tRNA synthetases are essential for cell sur-

vival and are not interchangeable in T. brucei (Español et al.

2009). The defected AARSs can be lethal and lead to
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numerous pathological problems including cancer, neuronal

pathologies, autoimmune disorders, and disrupted meta-

bolic conditions (Antonellis and Green 2008; Schimmel

2008; Park et al. 2008; Lee et al. 2006). The mutant gene of

mitochondrial aspartyl-tRNA synthetase causes leukoen-

cephalopathy, which has brain-stem and spinal cord

involvement and lactate elevation (LBSL) (Scheper et al.

2007). The mutated promoter region of mitochondrial iso-

leucyl-tRNA synthetase modifies its expression in heredi-

tary non-polyposis colorectal cancer (HNPCC) and Turcot

syndrome (Miyaki et al. 2001). A single nucleotide poly-

morphism of mitochondrial leucyl-tRNA synthetase leading

to an amino acid substitution (H324Q) was found in patients

afflicted with type 2 diabetes mellitus (t Hart et al. 2005).

The functional annotation tools for mitochondrial-tRNA

synthetases can help biologists to better understand these

diseases.

The sub-cellular location of AARSs can be predicted by

machine learning techniques. Earlier many computational

methods have been developed for the prediction of mito-

chondrial proteins (Guda et al. 2004; Kumar et al. 2006).

But these are comprehensive method and act universally

for all diverse type of mitochondrial proteins. To investi-

gate this problem, we have developed a tool for the dis-

crimination between cytosolic and mitochondrial tRNA

synthetases using support vector machine (SVM). In this

process, we analyzed both the type of tRNA synthetases

and optimized maximum distinguishable features from

protein sequences. First we applied amino acid composi-

tion; dipeptide composition; PSSM and split amino acid

composition (SAAC) patterns-based approaches. We have

developed a prediction tool ‘MARSpred’ using selected

composition of 40 residues of N-terminal, 60 residues of

C-terminal and intermediate amino acids. The SA-SAAC

based prediction model also performed well on indepen-

dent data sets. This prediction tool will be very helpful for

the functional annotation of tRNA synthetases by dis-

crimination between cytosolic and mitochondrial AARSs.

Results

It is very difficult to find out distinctive patterns from the

similar type of enzymes, which are only different in their sub-

cellular location. The machine learning for the prediction

tools development requires distinguishable features. We have

used the 40% non-redundant sequences of both mitochondrial

and cytosolic AARSs. The composition of physico-chemical

properties of both cytosolic and mitochondrial AARSs was

calculated. It was observed that they have almost equal

properties (Fig. 1). We have used many distinguishable pat-

terns for SVM-based machine learning. Different kernels and

parameters of SVM were tried and optimized the best per-

formance for discrimination between mitochondrial (posi-

tive) and cytosolic (negative) tRNA synthetases.

Sequence similarity search

One of the common practices for functional annotation of a

new protein is to perform a sequence similarity search

Fig. 1 The composition of

physico-chemical properties of

cytosolic and mitochondrial

tRNA synthetases
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against a database of well-annotated proteins. Thus, we

developed BLAST-based approach for discriminating

cytosolic and mitochondrial tRNA synthetases. At the 1 E

value threshold, all query sequences were found their target

sequence (see detail in ‘‘Materials and methods’’). We have

achieved maximum 81.36% sensitivity, 70.73% specificity,

77.00% accuracy with 0.52 MCC. This demonstrates that

BLAST alone can discriminate only 81.36% mitochondrial

tRNA synthetases from cytosolic tRNA synthetases. Thus,

there is a need to develop prediction models based on

machine learning techniques. We applied various amino

acid composition, dipeptide composition and position-

specific scoring matrix (PSSM)-based approaches to dis-

criminate cytosolic and mitochondrial tRNA synthetases

with high accuracy.

Amino acid compositions-based approach

It has been shown in the past that amino acid composition

can be used to classify the diverse class of proteins and

development of prediction tools using machine learning

techniques (Raghava and Han 2005; Garg et al. 2005). We

calculated the amino acid composition of both type of

tRNA synthetases and observed that they have significant

difference from each other (Fig. 2). SVM-based classifier

was developed using 20 dimension vectors of amino acid

composition, one for each amino acid. We achieved

98.33% sensitivity, 80.28% specificity, 91.00% accuracy

and 0.82 MCC.

Dipeptide composition-based approach

In the previous studies, it has been shown that dipeptide

composition-based methods are more successful than amino

acid-composition based in the discrimination between dif-

ferent class of proteins (Bhasin and Raghava 2004). We

calculated dipeptide composition of both type of tRNA

synthetases. SVM-based classifier was developed using 400

dimensions of vector (20 9 20) of dipeptide compositions,

one for each dipeptide. We achieved 83.18% sensitivity,

90.00% specificity, 86.00% accuracy and 0.73 MCC.

PSSM-based approach

In the past, multiple sequence alignment information in

form of PSSM has been used for developing prediction

methods (Kaur and Raghava 2004; Kumar et al. 2007).

First we created PSSM profile for each protein using

position-specific iterative BLAST (PSI-BLAST) search

against Swiss-Prot database. Secondly, we computed a

vector of dimension of 400 (20 9 20) from PSSM matrix.

Finally a SVM model was developed using PSSM and

achieved 88.33% sensitivity, 90.00% specificity, 89.00%

accuracy with 0.78 MCC.

N-terminal residues-based approach

In the mitochondrial tRNA synthetases, N-terminal resi-

dues are responsible for the targeting of tRNA synthetases

Fig. 2 The amino acid

composition of cytosolic and

mitochondrial tRNA synthetases
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into mitochondrial tRNA synthetases (Duchêne et al.

2009). So we have calculated different N-terminal amino

acid compositions of cytosolic and mitochondrial AARSs.

We compared various length of N-terminal and observed

that amino acid composition of 40 residues of mitochon-

drial N-termini is significantly different from cytosolic

tRNA synthetases (Fig. 3). The SVM module achieved

95.00% sensitivity, 85.00% specificity, 91.00% accuracy

and 0.82 MCC.

C-terminal residues-based approach

Recently, one study suggested that C-terminal is responsible

for the activity of tRNA synthetases (Español et al. 2009).

We calculated different C-termini amino acid compositions

and observed that composition of 60 residues of C-terminal is

different in mitochondrial and cytosolic AARSs (Fig. 4).

The SVM module achieved maximum 59.85% sensitivity,

78.33% specificity, 67.00% accuracy and 0.39 MCC.

Intermediate residues approach

After amino acid composition calculation of N-terminal

(40 residues) and C-terminal (60-residues), we calculated

composition of remaining intermediate amino acids

(Fig. 5). The best parameter of SVM-based machine

learning was optimized and achieved 79.85% sensitivity,

90.00% specificity, 84.00% accuracy and 0.70 MCC.

SAAC-based approach

We calculated SAACs for 40 amino acids of N-terminus,

60 amino acids of C-terminus and intermediate amino

acids. We have developed SVM module of all these

compositions and achieved 93.18% sensitivity, 92.50%

specificity, 93.00% accuracy with 0.86 MCC.

Selected attributes of split amino acid composition

(SA-SAAC) based approach

In this approach, we selected significant attributes (amino

acids) using WEKA 3.6.0 version. We have selected a

total of 13 attributes, which were 4, 1 and 8 from

N-termini, C-termini and intermediate regions, respec-

tively. All protein sequences were divided into three parts

(N-40, C-60 and intermediate) and total of 13 split amino

acids compositions of selected amino acids were calcu-

lated (Fig. 6). We developed highly efficient SVM mod-

ule and achieved 98.33% sensitivity, 92.50% specificity,

96.00% accuracy and 0.92 MCC. In all cases we found

that SA-SAAC based approach performed better than

others. The SA-SAAC based prediction model achieved

100% sensitivity, 96.69% specificity, 97.77% accuracy

and 0.95 MCC on the independent data sets (Table 1).

These results confirmed that performance of SA-SAAC

based model is not biased for our 40% non-redundant

main data set only.

Fig. 3 The N-termini (40

residues) amino acid

composition of cytosolic and

mitochondrial tRNA synthetases
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Performance comparisons with other algorithms

We have compared other external softwares with our SA-

SAAC based method (MARSpred). In this comparison, we

have used independent data sets, which were not used for

the training of our prediction method. The MARSpred,

MitoProt (Claros and Vincens 1996), MitPred (Kumar et al.

2006), MITOPRED (Guda et al. 2004) and Predotar (Small

et al. 2004) algorithms achieved MCC of 0.95, 0.87, 0.81,

0.77 and 0.76, respectively (Table 2). All these methods

have been provided with different parameters. We have

used all available parameters and find out maximum pos-

sible performance of these methods. These result shows

that SA-SAAC based approach is more robust and efficient

for the discrimination between mitochondrial and cytosolic

tRNA synthetases.

Fig. 4 The C-termini (60

residues) amino acid

composition of cytosolic and

mitochondrial tRNA synthetases

Fig. 5 The intermediate

(between 40 residues of

N-termini and 60 residues of

C-termini) amino acid

composition of cytosolic and

mitochondrial tRNA synthetases
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Functional annotation of AARSs

We have created a data set of total 88 unknown AARSs.

These are experimentally validated eukaryotic AARSs but

the sub-cellular localization of sequences are still unclear.

It is very important to predict their sub-cellular localization

to understand their role in protein synthesis properly. The

SA-SAAC based method predicted 17 and 71 protein

sequences as mitochondrial and cytosolic AARSs,

respectively.

Fig. 6 The average amino acid

composition of 13 selected

attributes for SA-SAAC

appraoch

Table 1 The performance of

SVM for different approaches

Bold values indicate high

performances

S. no. Approach Sensitivity Specificity Accuracy MCC

1 BLAST-based approach (E value = 1) 81.36 70.73 77.00 0.52

2 Amino acid composition based 98.33 80.28 91.00 0.82

3 Dipeptide composition based 83.18 90.00 86.00 0.73

4 PSSM based 88.33 90.00 89.00 0.78

5 N-terminal (40 residues) based 95.00 85.00 91.00 0.82

6 C-terminal (60-residues) based 59.85 78.33 67.00 0.39

7 Intermediate residues based 79.85 90.00 84.00 0.70

8 SAAC approach 93.18 92.50 93.00 0.86

9 SA-SAAC approach 98.33 92.50 96.00 0.92

10 SA-SAAC approach (independent datasets) 100.00 96.69 97.77 0.95

Table 2 The performance comparisons of MARSpred with other algorithms

S. no. Approach Sensitivity Specificity Accuracy MCC Parameters

1 MARSpred 100.00 96.69 97.77 0.95 Threshold = 0.7

2 MitoProt 96.55 92.56 93.85 0.87 Probability = 0.4

3 MitPred 81.03 96.69 91.62 0.81 Threshold = -0.5

4 MITOPRED 94.83 85.95 88.83 0.77 Confidence cut-off 60%

5 Predotar 68.97 99.17 89.39 0.76 Default

All the methods are ordered by MCC value

Bold values indicate high performances
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It is interesting to create organism-specific whole sets of

mitochondrial and cytosolic-tRNA synthesis but the avail-

ability of experimentally validated AARSs is very low.

Thus, we have retrieved total of 5,557 automatically

annotated eukaryotic AARSs from TrEMBL. These AARSs

requires further location-based functional annotation. The

SA-SAAC based method predicted 1,976 and 3,581 protein

sequences as mitochondrial and cytosolic AARSs, respec-

tively. We have prepared different sets for Homo sapiens,

Mus musculus, Drosophila melanogaster, Caenorhabditis

elegans, Arabidopsis thaliana and Saccharomyces cerevi-

siae. In the sets making process, first we have selected all

well annotated and location-wise experimentally validated

AARSs. Secondly, we predicted remaining (location

information is not known) experimentally validated AARSs

(marks with superscript ‘‘a’’) with our SA-SAAC based

approach. Thirdly, we have predicted automatically anno-

tated AARSs (marks with superscript ‘‘b’’) from TrEMBL

and tried to make whole sets for each organism. We have

found whole sets in Homo sapiens only, other organisms

lack either mitochondrial or cytosolic amino acid-specific

AARSs. Table 3 contains UniProt ID of organism-wise

available sets for mitochondrial and cytosolic AARSs. We

have discriminated these protein sequences of AARSs

based on the predicted SVM scores. The positive ([0) and

negative (\0) scores predicted as mitochondrial and cyto-

solic tRNA synthetases, respectively.

Discussion

All nucleus-encoded AARSs are first resides into cytosol.

Some of these AARSs transported from cytosol into

mitochondria. The experimental determination of sub-cel-

lular location of mitochondrial AARSs are very labour-

intensive and time-consuming procedure. To assist the

biologists in assigning the function of unknown AARSs

protein, a systematic attempt has been made for predicting

the site of AARSs. We obtained both mitochondrial

(positive) and cytosolic (negative) protein sequences from

UniProt database. We have selected many distinguishable

features between mitochondrial and cytosolic AARSs.

Amino acid composition-based comparison study sug-

gested that mitochondrial and cytosolic AARSs prefer

different amino acids for their construction.

The comparative analysis of mitochondrial and cytosolic

tRNA synthetases revealed that 40 residues of N-terminal

and 60 residues of C-terminal were significantly different

(Figs. 3, 4). We applied different type of approaches

(PSSM, amino acid, dipeptide, N-terminal, C-terminal,

SAAC and SA-SAAC) in machine learning of SVM. We

achieved maximum SVM performance in SA-SAAC based

approach. We found that Leu and Ser are more abundant in

mitochondrial tRNA synthetases and Asp, Glu and Lys are

preferred in cytosolic tRNA synthetase.

It is well established that N-terminal contains signal

peptide for sub-cellular localization of mitochondrial pro-

teins. In the N-terminal region (40 residues) Leu, Arg and Ser

are more profuse in mitochondrial tRNA synthetases and

Asp, Glu and Lys are favoured in cytosolic tRNA synthetase.

In the case of C-terminal region (60 residues) Leu, Gln, Arg

and Ser are more abundant in mitochondrial tRNA synthe-

tases and Glu, Phe, Gly, Lys and Tyr are preferred in cyto-

solic tRNA synthetase. In the intermediated region between

N- and C-terminal Leu, Pro, Gln and Ser are more plentiful in

mitochondrial tRNA synthetases and Asp, Glu and Lys are

favoured in cytosolic tRNA synthetases.

We have selected 13 most distinguishable features

between mitochondrial and cytosolic tRNA synthetases

using Weka. These were four (Asp, Glu, Lys, Arg), one

(Ser) and eight (Asp, Glu, His, Lys, Leu, Gln, Ser, Tyr)

amino acids from N-termini, C-termini and intermediate

regions, respectively (Fig. 6). The SA-SAAC based

method performed well on both main and independent data

sets. We have predicted different sets of mitochondrial and

cytosolic AARSs for H. sapiens, M. musculus, D. mela-

nogaster, C. elegans, A. thaliana and S. cerevisiae. In

future, experimental validation of mitochondrial and

cytosolic AARSs is very essential because their availability

is very low now. It will be very interesting to know how

eukaryotic cell maintains and regulates these two different

types of essential enzyme of translation machinery. We

anticipate that our prediction method ‘MARSpred’ will help

researchers to better understand the symbiotic affiliation

between mitochondria and eukaryotic cell.

Conclusions

To conclude, the present work is an attempt to discriminate

AARSs on the basis of their sub-cellular location. We ana-

lyzed protein sequences of both mitochondrial and cytosolic

AARSs and selected the distinguishable patterns. These

were amino acid, dipeptide, PSSM, N-terminal, C-terminal

and SAACs. We used these features as a SVM input-based

machine learning. We were able to model an efficient clas-

sifier from selected SAAC-based information. A server

called MARSpred was developed on the results obtained.

Materials and methods

Data sets

The eukaryotic AARSs data of total 390 experimentally

validated protein sequences were obtained from the

Sub-cellular localization of tRNA synthetases 1709
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UniProt database. This data set contains 162 cytosolic

and 117 mitochondrial tRNA synthetases. The remaining

111 sequences containing 88 unknown AARSs (locali-

zation non-specified in the UniProt database), 7 chloro-

plastic AARSs and 16 AARSs are fragments or dual

localized (mitochondrial/chloroplastic). We removed the

sequence similarity of mitochondrial and cytosolic tRNA

synthetases from the CD-HIT software (Li and Godzik

2006) and created a 40% non-redundant data set, which

contained protein sequences of total 41 cytosolic and 59

mitochondrial tRNA synthetases. These 40% non-redun-

dant data sets were used as main data sets. The

remaining 58 mitochondrial and 121 cytosolic-tRNA

synthetases were used as independent data sets. We have

used 88 unknown AARSs (unknown dataset) for the

location-based functional annotation of AARSs. We have

also retrieved total of 5,557 automatically annotated

eukaryotic AARSs from TrEMBL (dated 30-12-2010),

which were used to make the organism-specific whole

sets for mitochondrial and cytosolic AARSs. We have

used mitochondrial tRNA synthetases as positive and

cytosolic tRNA synthetases as negative data set for the

development of the tools for discrimination between

these two types of synthetases.

BLAST based approach

In this study we used BLAST for discriminating cytosolic

and mitochondrial tRNA synthetases using fivefold cross-

validation, where four sets of mitochondrial and cytosolic

tRNA synthetases were used to create a BLAST database

and both type of tRNA synthetases of the corresponding

test set were searched against this BLAST database. This

process was repeated five times, so the BLAST search was

performed once for each mitochondrial and cytosolic tRNA

synthetase. At 1 E value threshold all sequences of test sets

found their target in BLAST database. We calculated the

performance of BLAST in terms of sensitivity, specificity,

accuracy and MCC.

Amino acid and dipeptide composition

The aim of calculating the composition of protein is to

perform the variable length of protein sequences to fixed

length feature vectors because SVM machine learning

technique requires fixed length patterns. The amino acid

composition is the fraction of each amino acid in a protein

sequence and provides vector of 20 dimensions. The

dipeptide composition was used to encapsulate the global

information about each protein sequence, which gives a

fixed length pattern of 400 (20 9 20) vectors. Both amino

acids and dipeptide composition was calculated, and used

as input to discrimination between cytosolic and

mitochondrial tRNA synthetase using machine learning of

SVM.

Composition of N-termini, C-termini and intermediate

residues

We calculated separate amino acid compositions for each

approach. We have used first 40 residues for N-terminus,

last 60 residues for C-termini and remaining residues for

the intermediate approach. For each approach separate

SVM-based classifier was developed using 20 dimensions

of vector of amino acid composition, one for each amino

acid.

Split amino acid composition

In the case of SAAC approach, we have divided each

protein sequence into three parts: (a) 40 residues of the

N-terminus, (b) 60 residues of the C-terminus, and (c) the

intermediate region. The variable length protein sequences

were represented by a fixed length pattern of 60 dimensions

of vector instead of 20 in case of standard amino acid

composition. The advantage of SAAC over standard amino

acid composition is that it provides greater weight of

compositional biasness to proteins that have a signal at

either the N or C terminus.

Attribute selection method

We have selected most significant amino acids from mito-

chondrial and cytosolic tRNA synthetases using WEKA

3.6.0 version (Hall et al. 2009). WEKA is a package of java

programs for machine learning. In this study, we used attri-

bute evaluator for SVMAttributeEval (parameter -X 1 -Y 0

-Z 0 -P 1.0E-25 -T 1.0E-10 -C 1.0 -N 0) method with ranker

(parameter -T -1.7976931348623157E308 -N -1). We have

used split composition of these selected amino acids from

N-termini, C-termini and intermediate regions. These split

compositions were used in SA-SAAC approach.

Position-specific scoring matrix

The PSSM was generated using the PSI-BLAST search

with a cut-off E value of 0.01 against the large databases

such as the non-redundant (NR) database available at

Swiss-Prot (Altschul et al. 1997). After three iterations,

PSI-BLAST generates the PSSM with the highest score

from multiple alignments of the high-scoring hits by

calculating the position-specific scores for each position

in the alignments. The matrix contains 20 9 N elements,

where N is the length of the target sequence, and each

element represents the frequency of occurrence of each of

the 20 amino acids at a particular position in the

Sub-cellular localization of tRNA synthetases 1711
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alignment. The final PSSM was normalized using a sig-

moid function. SVM input requires fixed length for

machine learning; we summed all of the rows in the

PSSM corresponding to the same amino acid in the

sequence, and then divided each element by the length of

the sequence.

Support vector machines

In this study, a highly successful machine learning tech-

nique termed as a SVM was used. Machine learning of

SVM is based on the structural risk minimization prin-

ciple of statistics learning theory. SVMs are a set of

related supervised learning methods used for classification

and regression (Vapnik 1999). We can choose and opti-

mize number of parameters and kernels (e.g. linear,

polynomial, radial basis function and sigmoidal) or any

user-defined kernel. In this study we implemented

SVMlight Version 6.01 package (Joachims 1999) of SVM

and learning was carried out using three different (linear,

polynomial and radial basis function) kernels. SVM takes

a set of feature vectors as input, along with their output,

which is used for training of model. After training,

learned model can be used for the prediction of unknown

examples (Kumar and Raghava 2009). In this work, the

SVM training has been carried out by the optimization of

various parameters of different kernels and the value of

the regularization parameter C. We optimized different

kernels for all approaches and preliminary tests showed

that the RBF kernel gives better results than other kernels.

Therefore, in this work the RBF kernel was used for all

the approaches.

Fivefold cross validation

Firstly, we have used mitochondrial AARSs as positive

data set and cytosolic AARSs as negative data set for the

development of the tools for discrimination between these

two types of AARSs. Both protein sequences of positive

and negative data sets were randomly divided into five

parts. Each of these five sets consists of one-fifth of posi-

tive and one-fifth of negative sequences. For training,

testing and evaluating our methods, we have used a fivefold

cross-validation technique (Chou and Shen 2007). In this

technique, the training and testing was carried out five

times, each time using one distinct set for testing and the

remaining four sets for training.

Evaluation parameters

The performance evaluation of method was done by cal-

culating the sensitivity, specificity, accuracy and the MCC

of the prediction. These calculations were routinely used in

these type of prediction-based studies (Bhasin and Raghava

2005; Kumar et al. 2005). These parameters can be cal-

culated using Eqs. 1–4,

Sensitivity ¼ TP= TPþ FNð Þ½ � � 100 ð1Þ
Specificity ¼ TN= TNþ FPð Þ½ � � 100 ð2Þ
Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ½ � � 100

ð3Þ

MCC ¼ ðTPÞðTNÞ � ðFPÞðFNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FP½ � TPþ FN½ � TNþ FP½ � TNþ FN½ �
p ð4Þ

where, TP is correctly predicted positive (mitochondrial

AARSs) proteins; TN is correctly predicted negative

(cytosolic AARSs) proteins; FP is wrongly predicted

positive (mitochondrial AARSs) proteins; FN is wrongly

predicted negative (cytosolic AARSs) proteins.

The performance of a method is an average of five sub

sets, which is created by fivefold cross-validation tech-

nique. MCC is considered to the most robust parameters for

the evaluation of any prediction method (Baldi et al. 2000).

The MCC value of 1 corresponds to a perfect prediction,

whereas 0 corresponds to a completely random prediction.

All these parameters are threshold-dependent and they

require proper optimization for the better performance. The

complete optimization of all parameters is very important

step in SVM-based machine learning. We manually opti-

mized all parameters and selected the one, which gives best

performance.

Web-server

We have developed a user friendly web-server MARSpred

for the prediction of mitochondrial tRNA synthetases. This

prediction method is freely available from http://www.

imtech.res.in/raghava/marspred web-address. In this server,

PHP technologies have been used to build the dynamic web

interface. We also implemented our previously developed

web-server icaars (Panwar and Raghava 2010) with

MARSpred. It requires protein sequence in FASTA format.

Firstly, icaars server will predict that whether protein

sequence belongs to AARS or Non-AARS. If protein

sequence is predicted as AARSs then MARSpred server

will predict whether protein sequence belongs to cytosolic

or mitochondrial AARSs. We have also provided our data

sets and other supplementary materials, which were used

for the development of MARSpred web-server.
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Schiffmann R, Krägeloh-Mann I, Smeitink JA, Florentz C, Van

Coster R, Pronk JC, van der Knaap MS (2007) Mitochondrial

aspartyl-tRNA synthetase deficiency causes leukoencephalopa-

thy with brain stem and spinal cord involvement and lactate

elevation. Nat Genet 39:534–539

Schimmel P (2008) Development of tRNA synthetases and connec-

tion to genetic code and disease. Protein Sci 17:1643–1652

Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for

rapidly screening proteomes for N-terminal targeting sequences.

Proteomics 4(6):1581–1590

t Hart LM, Hansen T, Rietveld I, Dekker JM, Nijpels G, Janssen GM,

Arp PA, Uitterlinden AG, Jørgensen T, Borch-Johnsen K, Pols

HA, Pedersen O, van Duijn CM, Heine RJ, Maassen JA (2005)

Evidence that the mitochondrial leucyl tRNA synthetase

(LARS2) gene represents a novel type 2 diabetes susceptibility

gene. Diabetes 54:1892–1895

Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The

mitochondrial genome of Arabidopsis thaliana contains 57 genes

in 366, 924 nucleotides. Nat Genet 15:57–61

Vapnik VN (1999) An overview of statistical learning theory. IEEE

Trans Neural Netw 10:988–999

Sub-cellular localization of tRNA synthetases 1713

123


	Predicting sub-cellular localization of tRNA synthetases from their primary structures
	Abstract
	Introduction
	Results
	Sequence similarity search
	Amino acid compositions-based approach
	Dipeptide composition-based approach
	PSSM-based approach
	N-terminal residues-based approach
	C-terminal residues-based approach
	Intermediate residues approach
	SAAC-based approach
	Selected attributes of split amino acid composition (SA-SAAC) based approach

	Performance comparisons with other algorithms
	Functional annotation of AARSs

	Discussion
	Conclusions
	Materials and methods
	Data sets
	BLAST based approach
	Amino acid and dipeptide composition
	Composition of N-termini, C-termini and intermediate residues
	Split amino acid composition
	Attribute selection method
	Position-specific scoring matrix
	Support vector machines
	Fivefold cross validation
	Evaluation parameters

	Web-server
	Acknowledgments
	References


