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ABSTRACT In this paper a systematic attempt
has been made to develop a better method for
predicting �-turns in proteins. Most of the com-
monly used approaches in the field of protein struc-
ture prediction have been tried in this study, which
includes statistical approach “Sequence Coupled
Model” and machine learning approaches; i) artifi-
cial neural network (ANN); ii) Weka (Waikato Envi-
ronment for Knowledge Analysis) Classifiers and iii)
Parallel Exemplar Based Learning (PEBLS). We
have also used multiple sequence alignment ob-
tained from PSIBLAST and secondary structure
information predicted by PSIPRED. The training
and testing of all methods has been performed on a
data set of 193 non-homologous protein X-ray struc-
tures using five-fold cross-validation. It has been
observed that ANN with multiple sequence align-
ment and predicted secondary structure informa-
tion outperforms other methods. Based on our obser-
vations we have developed an ANN-based method
for predicting �-turns in proteins. The main compo-
nents of the method are two feed-forward back-
propagation networks with a single hidden layer.
The first sequence-structure network is trained with
the multiple sequence alignment in the form of
PSI-BLAST-generated position specific scoring ma-
trices. The initial predictions obtained from the first
network and PSIPRED predicted secondary struc-
ture are used as input to the second structure–
structure network to refine the predictions ob-
tained from the first net. The final network yields an
overall prediction accuracy of 78.0% and MCC of 0.16.
A web server AlphaPred (http://www.imtech.res.in/
raghava/alphapred/) has been developed based on
this approach. Proteins 2004;55:83–90.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

For several decades, the protein tertiary structure pre-
diction has been among the most challenging problem in
the biological sciences. In the absence of homologous
structures, an intermediate and useful step to solve pro-
tein tertiary structure prediction problem is to predict the
protein secondary structure. The secondary structure of a
protein is characterized by regular elements such as
�-helices and �-sheets and irregular elements such as

�-bulges, random coils and tight turns.1 Tight turns
provide a directional change for the polypeptide chain and
act as a linking motif between different secondary struc-
tures. They often contain charged and hydrophilic residues
and are thus mostly located on the surface of a protein.
Depending on the number of residues forming the turn,
the tight turns are classified as �-turns, �-turns, �-turns,
�-turns and �-turns.1 Among these tight turns, �- and
�-turns have been studied in detail and precisely classified
in past. In comparison to �- and �-turns, �-turns are little
investigated due to their lower occurrence in proteins and
peptides. The �-turn corresponds to a chain reversal
involving five amino acids and may be stabilized by a
hydrogen bond between the CO group of the first residue
and the NH group of the fifth.

In 1996, Pavone et al. had undertaken a systematic
search of isolated �-turns in a data set of 193 proteins and
compared structures of different types of �-turns using a
clustering procedure. This study has revealed that these
structures are mainly characterized by hydrophilic amino
acids. It has also been shown that these structures are not
only exposed to solvent, but also protrudes outward from
the protein surface with a hook-like shape and therefore
these structural motifs can function in interaction mecha-
nisms.2

It has been shown in past that �-turns have a functional
role in molecular recognition and protein folding.3–6 For
instance, it was found that the residues in the �-turn in
protein human lysozyme participate in a cluster of hydro-
gen bonds and they are located in the active site cleft
suggesting the possibility of a functional role.3 Cys residue
in �-turn (residues 35–39) in protein Ferredoxin I and His
and Met residues in � -turn (residues 117–121) in protein
azurin are involved in the metal ion coordination.4,5 In
T-cell surface glycoprotein, residues 51–55 forming an
�-turn are located in the putative binding region of HIV
gp120 protein.6 Moreover, �-turns are also relevant struc-
tural domains in small peptides, particularly in cyclopep-
tides containing 7–9 residues in their sequence.7 Thus,
these rarely occurring motifs whenever present on the
protein surface might contain specific information about
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molecular recognition processes. Therefore, there is a need
and also it will be useful to develop a prediction method for
detecting �-turn residues in a given amino sequence.

One statistical method based on the Sequence Coupled
Model has been reported in literature for prediction of
�-turns.8 In order to develop a highly accurate method for
predicting �-turns, we have applied the different com-
monly used techniques in the field of protein secondary
prediction. Firstly, we have implemented the Sequence
Coupled Model as described by Chou (1997) using five-fold
cross-validation. Further, three machine learning pack-
ages, ANN using SNNSv4.2 (Stuttgart Neural Network
Simulator),9 Weka3.210 and PEBLS11 have been used. It
has been demonstrated in past that secondary structure
information and multiple sequence alignment (rather than
single sequence) increases the performance of turn predic-
tion methods significantly (e.g., �- and �-turns predic-
tion).12,13 Thus, all the methods have been trained and
tested using PSI-BLAST14 profiles and PSIPRED15 pre-
dicted secondary structure. It has been found that neural
network method has the highest accuracy level in compari-
son to Sequence Coupled Model and the machine learning
methods Weka and PEBLS. Based on this study, a neural
network method AlphaPred for �-turn prediction has been
developed which uses two steps. In the first step, a
sequence-to-structure network is used to predict �-turns
from multiple alignment of protein sequence. In the second
step, it uses the structure-to-structure network where
input is predicted �-turns obtained from first step and
PSIPRED predicted secondary structure states.

MATERIALS AND METHODS
The Data Set

The method has been developed on the data set clus-
tered by Pavone et al (1996).2 It is comprised of 193
representative protein X-ray structures with resolution �
2.5Å. A total of 356 isolated �-turns have been extracted.
All secondary structures, other than �-turns have been
picked up from the same 193 proteins and have been
treated as non-�-turn data set.

Since the �-turns are often associated with �-turns, the
dataset of �-turns have been analyzed for the presence of
�-turns. The �-turns have been assigned using Promotif16

program. Out of 356 �-turns, 100 have been found to
contain �-turns and mostly there are two �-turns per
�-turn with at least one overlapping residue.

5-Fold Cross Validation

A 5-fold cross-validation procedure has been used to
develop the prediction method, where five subsets have
been constructed randomly from the data set. Each set is
an unbalanced set which retains the naturally occurring
proportion of �-turns and non-�-turns. The datasets for
Sequence Coupled Model, Weka and PEBLS consists of a
training set and a testing set. The training set consists of
four subsets and the testing is done on the remaining fifth
set. The learning method is applied on the training set and
its performance is tested on the testing set. To avoid
over-training by neural network, the datasets for SNNS

neural network learning consists of a training set, a
validation set and a testing set. A training set is consisted
of three subsets. The performance of the network has been
monitored on validation set to avoid over-learning and the
network is tested on the excluded set of proteins, the
testing set. For all the methods, the prediction has been
done five times to test for each subset and the final
prediction results have been averaged over five testing
sets.

Statistical Method: Sequence Coupled Model

Chou (1997)8 proposed a residue-coupled model based on
first order Markov chain to predict �-turns in proteins. The
same approach has been applied here for �-turn prediction
using 5-fold cross-validation. For detailed methodology,
please refer to Chou (1997).

Machine Learning Method: Artificial Neural
Network

In the present study, two feed forward back propagation
networks with a single hidden layer have been used. The
window size and the number of hidden units have been
optimized. Both the networks have window eleven resi-
dues wide and have 10 units in a single hidden layer. The
target output consists of a single binary number and is 1 or
0 for �-turn and non-�-turn residue respectively. The
window is shifted residue by residue through the protein
length, thus yielding N patterns for a protein with N
residues. The neural network has been implemented using
the publicly available free simulation package SNNS
version 4.2.9 It allows incorporation of the resulting net-
works into an ANSI C function for use in stand-alone code.
A linear activation function is used. At the start of each
simulation, the weights are initialized with the random
values. The training is carried out using error-backpropa-
gation with a sum of square error function (SSE).17 The
magnitude of the error sum in the test and training set is
monitored in each cycle of the training. The ultimate
number of cycles is determined, where the network con-
verges. An overview of each network is given below.

First level—Sequence-to-Structure ANN

The input to the first network is either single sequence
or multiple alignment profiles. Patterns are presented as
window of eleven residues where a prediction is made for
the central residue. In case of single sequence, binary
encoding scheme has been used as input. In this scheme,
each amino acid is coded by the binary vector (1, 0, 0,. . .) or
(0, 1, 0,. . .), etc. The vector is 21-dimensional. Among the
first twenty units of the vector, each unit stands for one
type of amino acid. In order to allow a window to extend
over the N terminus and the C terminus, the 21st unit has
been added for each residue. In case of multiple alignment,
the position specific scoring matrix generated by PSI-
BLAST has been used as input to the net. The matrix has
21 � M real number elements, where M is the length of the
target sequence.
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Second level—Structure-to-Structure ANN

The second network takes the outputs from first net-
work and yields the final prediction based on these out-
puts. The input to second filtering network is prediction
obtained from the first net and the secondary structure
predicted by PSIPRED. Four units encode each residue
where one unit codes for output from first net and remain-
ing three units are the reliability indices of three PSIPRED
predicted secondary structure states-helix, strand and coil
(Fig. 1).

Machine Learning Method: Weka

The machine learning package Weka3.2 is a collection of
machine learning algorithms such as ZeroR, OneR, Naı̈ve
Bayes, Logstic Regression, Linear regression, LWR, J48,
decision table for classification and numeric prediction.10

The data for Weka is represented in ARFF (attribute-
relation function format) format that consists of a list of all
instances, with the attribute values for each instance
being separated by commas. The results from the Weka
consists of a confusion matrix for both the training and
testing set showing the number of instances of each class
that have been assigned to each class. In this study the
following three classifiers of Weka have been used: i)
Logistic Regression18 which is a variation of ordinary
regression and particularly useful when the observed
outcome is restricted to two values; ii) Naı̈veBayes19

algorithm that implements Bayesian classification based

on Bayes’ theorem of conditional probability and iii) J4820
classifier based on C4.5 algorithm that generates a classifi-
cation-decision tree for the given data set by recursive
partitioning of data. As data in this study is highly
unbalanced (non turns much more than �-turns), so we
have used Weka’s cost-sensitive classification option in
which the data sets have been weighted according to the
distribution of �-turns and non-�-turns and penalties have
been assigned to each class (�-turn/non-�-turn) in the cost
matrix. The penalties have been optimized by learning the
classifier several times.

Machine Learning Method: Example-Based
Learning

PEBLS is a nearest-neighbor learning system de-
signed for applications where the instances have sym-
bolic feature values.11 It treats a set of training ex-
amples as points in a multi-dimensional feature space.
Test instances are then classified by finding the closest
exemplar currently contained in the feature space. The
nearest neighbors or exemplars are determined by com-
puting the distance to each object in the feature space
using modified value distance metric (MVDM) based on
the original value distance metric of Stanfill and Waltz.21

These neighbors are then used to assign a classification
to the test instance.

Fig. 1. The neural network system used for �-turn prediction. The network system consists of two networks: first level sequence-to-structure network
and second level structure-to-structure network. Basic cell containing 20�1 units to code residues at that position in the window. Here, window

size 	 11. Hidden layer containing 10 units. In second level network, 4 units encode each residue. F prediction obtained from first network E
secondary structure state (helix, strand and coil) predicted byPSIPRED.
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Multiple Sequence Alignment and Secondary
Structure

PSIPRED uses PSI-BLAST to detect distant homo-
logues of a query sequence and generate a position-specific
scoring matrix as part of the prediction process.15 These
intermediate PSI-BLAST-generated position-specific scor-
ing matrices are used as input in our method in cases
where multiple sequence alignment is used. The matrix
has 21� M elements, where M is the length of the target
sequence and each element represents the frequency of
occurrence of each of the 20 amino acids at one position in
the alignment.14 The secondary structure predicted by
PSIPRED has been used in prediction. The predicted
secondary structure states from PSIPRED are used to
filter the �-turn prediction in the case of the Sequence
Coupled Model and input for structure-to structure net-
work, Weka classifiers, and PEBLS. In the final prediction,
output has been filtered, where the �-turns are predicted
only for those residues that are in the predicted coil region,
i.e., eliminating the potential helix and strand-forming
residues from �-turn prediction.

Filtering the Prediction

Since the prediction is performed for each residue sepa-
rately, thus prediction includes a number of unusually
short �-turns of 1, 2, 3, or 4 residues. To exclude such
unrealistic turns in final prediction, we have retained only
those turns that are five residues long.

Performance Measures
Threshold dependent measures

Four parameters have been used in present work to
measure the performance of �-turn prediction method as
described by Shepherd et al.22 These four parameters can
be derived from the four scalar quantities: p(number of
correctly classified �-turn residues), n(number of correctly
classified non-�-turn residues), o(number of non-�-turn
residues incorrectly classified as �-turn residues) and
u(number of �-turn residues incorrectly classified as non-�-
turn residues). Another way to visualize and arrange these
four quantities is to use a contingency or confusion matrix
C

C � � p u
o n �

The four parameters that can be derived from these four
quantities are: i) Qtotal (or prediction accuracy), is the
percentage of correctly classified residues; ii) Matthew’s
correlation coefficient (MCC), which is a more stringent
measure of prediction accuracy accounts for both over and
under-predictions; iii) Qpredicted is the percentage of
correctly predicted �-turns (or probability of correct predic-
tion); and iv) Qobserved is the percentage of observed
�-turns that are correctly predicted (or percent coverage).
The parameters can be calculated by following equations:

Qtotal �
p � n

t

MCC �
pn � ou

��p � o��p � u��n � o��n � u�

Qpredicted �
p

p � o � 100

Qobserved �
p

p � u � 100

where, t 	 p � n � o � u is the total number of residues.
All these performance measures have been calculated at
residue level, not at whole turn level.

Segment Overlap Measure (SOV)

The single-residue predictions do not completely reflect
the quality of a prediction. It is important to estimate the
number of �-turns and their lengths (number of residues
in predicted �-turns). To address the overlapping between
the observed and predicted �-turns, SOV23 has been
calculated as:

Sov �
1
N �

s

min ov�S1;S2� � �

max ov�S1;S2�
� len(S1)

where S1 and S2 are the observed and predicted �-turns;
len(S1) is the number of residues in the segment S1;
minov(S1;S2) is the length of actual overlap of S1 and S2 or
the extent for which both segments have residues in
�-turn; maxov(S1;S2) is the length of the total extent
for which either of the segments S1 or S2 has a residue
in �-turn; � is the integer value defined as equal to
the min{(maxov(S1;S2)-minov(S1;S2));minov(S1;S2);
int(len(S1)/2);int(len(S2)/2)}; N is the number of residues
in �-turn and sum is taken over all the pairs of segments
{S1;S2}, where S1 and S2 have at least one residue in
�-turn in common.

Threshold independent measures

One problem with the threshold dependent measures is
that they measure the performance on a given threshold.
They fail to use all the information provided by a method.
The Receiver Operating Characteristic (ROC) is a thresh-
old independent measure that was developed as a signal
processing technique. For a prediction method, ROC plot is
obtained by plotting all sensitivity values (true positive
fraction) on the y-axis against their equivalent (1-
specificity) values (false positive fraction) for all available
thresholds on the x-axis. The area under the ROC curve is
taken as an important index because it provides a single
measure of overall accuracy that is not dependent on a
particular threshold.24 It measures discrimination, the
ability of a method to correctly classify �-turn and non-�-
turn residues. Sensitivity (Sn) and specificity (Sp) are
defined as

Sn �
p

p � u and Sp �
n

n � o
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RESULTS

All the methods have been trained and tested using
five-fold cross-validation. The prediction performance mea-
sures have been averaged over five sets and are expressed
as the mean 
 standard deviation. In the case of the
Sequence Coupled Model, the conditional probabilities
have been calculated for �-turns and non-turns separately
as described in Materials and Methods. In Weka, three
classifiers have been used and the penalties for the cost
matrix have been optimized. For PEBLS, we have varied
the number of neighbors from single to multiple (1 to 30),
and it has been found that single nearest neighbor gives
best results. Hence, the result for PEBLS shown here is
based on single nearest neighbor.

Prediction With Single Sequence

The prediction results of various methods with single
sequence as input are shown in Table I. As can be seen that
the probability of correct prediction, Qpred is in the range
2–10% and is indeed poor for all methods. Among all the
methods, the best performance has been obtained with
Weka classifiers Logistic Regression and Naı̈ve Bayes.
Surprisingly, these classifiers have also outperformed
neural network method SNNS. The average MCC value
with SNNS is 0.06, in comparison to Weka classifiers
reaching a MCC of 0.09. The performance of PEBLS differ
significantly from all other methods with respect to both
the probability of correct prediction and coverage of �-turns
and is much lower. When using the Sequence Coupled
Model, a MCC of 0.03 has been obtained which is least
among all other methods.

Prediction With Single Sequence and Secondary
Structure

We next wanted to know whether including secondary
structure information in prediction would be beneficial or
not. We therefore used the secondary structure predicted
from PSIPRED. In case of machine learning methods,
secondary structure states predicted by PSIPRED have
been used along with the prediction outputs (obtained

from single sequence) as input to structure-to-structure
net, Weka classifiers and PEBLS. The performance of all
methods after incorporating secondary structure informa-
tion has been improved (Table I). When applying a fivefold
cross-validation test, the SNNS reached an overall accu-
racy of 70.3% and MCC value is increased from 0.06 with
single sequence to 0.13. The best results have been achieved
with SNNS and Weka classifiers Logistic regression and
Naı̈ve Bayes, having prediction accuracy around 70–72%
and all having MCC value equal to 0.13. An improvement
in all other measures can also be noticed after including
secondary structure. As can be seen, SNNS and Weka
classifiers have much better performance compared to
PEBLS and Sequence Coupled Model. Even after includ-
ing secondary structure, PEBLS and Sequence Coupled
Model did not work well.

Prediction With Multiple Alignment

It is known that multiple sequence alignment rather
than single sequence, improves prediction accuracy. Thus,
all the machine learning algorithms have been trained and
tested on PSI-BLAST-generated position-specific matri-
ces. It is apparent from the results presented in Table II
that there is a significant gain in prediction accuracy for
all methods. The maximum MCC value of 0.13 has been
obtained with Weka classifier Logistic Regression and is
better than SNNS. With SNNS, the MCC improves from
0.06 with single sequence to 0.09. Thus, substantial im-
provements in prediction performance have come from the
use of PSI-BLAST scoring matrices in preference to binary
encoding of single sequence. Overall, the results of PEBLS
and Weka classifier J48 are inferior in comparison to other
methods.

Prediction With Multiple Alignment and Secondary
Structure

Accuracy is further improved by using a second filtering
network and secondary structure information. Output
from the first step (trained on PSI-BLAST scoring matri-
ces) and secondary structure predicted from PSIPRED is

TABLE I. Results of �-Turn Prediction Methods, When Single Sequence Has Been Used
as Input. The Performance Is Averaged Over Five Test Sets†

Method Qtotal Qpred. Qobs. MCC

Sequence coupled model 52.6 
 0.8 2.6 
 0.4 40.4 
 2.4 0.03 
 0.01
(57.8 
 1.9) (5.9 
 0.6) (43.2 
 2.4) (0.05 
 0.01)

SNNS (Std. Backpropagation) 61.8 
 4.0 6.5 
 0.4 51.1 
 6.7 0.06 
 0.01
(70.3 
 2.5) (7.4 
 0.6) (60.8 
 5.2) (0.13 
 0.01)

Weka (Logistic Regression) 63.5 
 1.8 7.4 
 0.5 57.0 
 2.0 0.09 
 0.01
(72.7 
 0.8) (7.6 
 0.7) (58.5 
 2.3) (0.13 
 0.01)

Weka (Naı̈ve Bayes) 67.9 
 1.5 7.7 
 0.6 51.8 
 4.7 0.09 
 0.01
(64.7 
 2.2) (6.8 
 0.5) (69.0 
 1.6) (0.13 
 0.01)

Weka (J48 classifier) 87.2 
 0.5 7.8 
 1.1 15.1 
 2.2 0.04 
 0.01
(89.2 
 0.4) (7.8 
 0.7) (17.7 
 1.4) (0.07 
 0.01)

PEBLS 90.9 
 0.6 10.5 
 1.3 11.1 
 0.6 0.06 
 0.01
(93.3 
 0.6) (11.5 
 2.0) (11.4 
 0.4) (0.08 
 0.01)

†Values in parentheses corresponds to the performance of �-turn prediction methods, when secondary structure
information obtained from PSIPRED is also used.
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further trained. A tremendous improvement can be noted
especially for SNNS method (Table II). Use of secondary
structure information improves the MCC to 0.16. The
method shows segment overlap measure SOV 	 42.4%,
which is a more realistic assessment of prediction quality.
The overall per-residue accuracy is 78% and is the best
among all the methods tested. For Weka classifiers, a
marginal increase in prediction accuracy has been ob-
served but there is no change in MCC value. The same is
true for PEBLS also, which shows negligible improvement
after incorporating secondary structure information.

Receiver Operating Characteristic Results

By calculating the area under the receiver operating
characteristic (ROC) curve, the performance of different
networks has been assessed. Figure 2 shows the ROC
curves for four different networks. The four curves have
been compared by computing the area under the curves.
The corresponding area under the curves is as follows:
single sequence, 0.61; multiple alignment 0.70; single
sequence with secondary structure 0.72; and multiple
alignment with secondary structure, 0.80. These ROC
values reflect the better classification by network system
learned on PSI-BLAST profiles and secondary structure
information.

AlphaPred Server

Based on current work, a web server AlphaPred has
been developed to predict �-turns from a given primary
amino acid sequence. Users can enter the one-letter amino
acid sequence in fasta or plain text format. The output
consists of secondary structure predicted by PSIPRED and
predicted �-turn or non-�-turn residues. A sample of the
prediction output has been shown in Figure 3.

DISCUSSION AND CONCLUSION

Irregular protein secondary structures are believed to be
important structural domains involved in molecular recog-
nition processes and protein folding. In this respect, tight
turns are being studied in detail. Isolated �-turns, not
participating in �-helical structures, have been studied
little in comparison to other types of tight turns because
�-turns present in proteins are sparse. In the past, a
systematic study and classification of isolated �-turns into
different types based on conformational similarity has
been reported. In fact, on average, about two isolated
�-turns were identified in each protein analyzed. The
identification and classification of isolated �-turns has
indicated the relevance of this irregular secondary struc-
ture. The �-turns are characterized by hydrophilic amino
acids, thus are present on the protein surface and can
function as keys in a lock-key interaction mechanism
between proteins. Moreover, these turns provide a connec-
tion between extended peptide chains. In several cases,
these turns are located at the tip of type 3 and 4 �-hair-

TABLE II. Performance of SNNS, Weka and PEBLS Classifiers Using Multiple Alignment and
Secondary Structure Information

Multiple alignment Multiple alignment and secondary structure

SNNS
(first network)

Weka classifiers

PEBLS
SNNS

(second network)

Weka classifiers

PEBLS
Logistic

Regression
Naı̈ve
Bayes

J48
Classifier

Logistic
Regression

Naı̈ve
Bayes

J48
Classifier

Qtotal 68.1 66.0 63.4 89.8 91.0 78.0 74.7 62.5 90.9 91.2
Qpred. 8.5 8.6 8.0 10.1 11.1 9.4 8.0 6.4 8.2 10.2
Qobs. 53.8 62.5 63.5 14.3 12.3 55.5 55.1 67.2 14.8 12.5
MCC 0.09 0.13 0.12 0.07 0.07 0.16 0.13 0.12 0.06 0.07

Fig. 2. ROC curves for four different neural network systems. Solid
line indicates single sequence; dotted line indicates multiple alignment;
dashed line indicates single sequence with secondary structure; and
solid/dotted line indicates multiple alignment with secondary structure.

Fig. 3. Sample �-turn/non-turn predictions by AlphaPred server.
Predictions are made using multiple alignment and secondary structure
information. For each block, row 1 is the amino acid sequence, row 2 is
the secondary structure predicted by PSIPRED (H 	 helix, E 	 strand,
and C 	 coil) and row 3 is the predicted �-turns (denoted by ‘a’) and
non-turns (denoted by ‘.’).
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pins.25 Also, �-turns are important structural domains in
cyclo-peptides such as Ilamicinb126 and cyclolinopeptide
A27 that have important biological functions. Despite the
importance of �-turns only one method based on sequence
coupled model has been reported in past for predicting
�-turn types in proteins. The average rates of correct
prediction of this method by resubstitution test and jack-
knife test were 98.07% and 94.47% respectively.1 To the
authors best knowledge, this is a first attempt to develop a
method using successful techniques and concepts in the
field of protein structure prediction.

Initially, the training and testing of all the methods has
been done with single sequences alone as well as with
PSIPRED predicted secondary structure. Surprisingly, it
has been found that the Weka classifiers Logistic regres-
sion and Naı̈ve Bayes have better prediction performances
than SNNS on single sequences. The MCC achieved by
Weka classifiers is 0.09 in comparison to 0.06 of SNNS.
PEBLS and Sequence Coupled Model perform poorly among
all the methods. The results of Sequence Coupled Models
are lower in this study than that reported by Chou (1997)8

using the same method. This is due to the fact that we have
selected a different threshold than Chou (1997). At a
particular threshold value, one can achieve a high rate of
correct prediction (the same as achieved by Chou, 1997)
but at the cost of low MCC value and probability of correct
prediction. Moreover, to assess the prediction perfor-
mance, MCC is a more stringent criterion as compared to
rate of correct prediction. The rate of correct prediction can
be misleading owing to the disparity between �-turn and
non-turn residues; hence it is possible to get high rate of
correct prediction by the trivial strategy of predicting all
residues to be non-turn residues. Thus, we have shown the
results at a particular threshold value where there is a
compromise between the rate of correct prediction and
MCC value.

When secondary structure information is incorporated,
the results of SNNS and Weka classifier Logistic Regres-
sion is comparable. One important point that can be
noticed is that the Qpred., the probability of correct
prediction, is significantly low in all the methods. All the
machine learning methods have been trained and tested
on PSI-BLAST obtained scoring matrices with and with-
out secondary structure information. The inclusion of
multiple sequence alignment information into the predic-
tion scheme has given a significant boost in prediction
accuracy of all methods. This is due to the fact that
PSI-BLAST profiles have some basic advantages as more
distant sequences are found; the probability of each se-
quence is properly weighted with respect to the amount of
information it carries. For SNNS, MCC value increases
from 0.06 with single sequence to 0.09 with PSI-BLAST
whereas for Weka classifier Logistic Regression, it im-
proves from 0.09 to 0.13 and is the best among all the
method tested. Moreover, when secondary structure is
used, the neural network and Weka classifiers have a final
MCC of 0.16 and 0.13 respectively. Comparing the final
results of neural network and Weka classifiers results in
favor of the neural network. It is worth noting that the

MCC so achieved is not so high and the probability of
correct prediction is indeed poor.

One of the reasons for poor performance of the method
described here is that the number of �-turns in proteins is
very small in comparison to number of non �-turns (ratio of
�-turns:non �-turns being 1:26). When a more robust
measure of predictive performance is used such as MCC,
�-turn prediction method appears far less successful in
comparison to helix and sheet prediction methods. The fact
that �-turns are very few resulted in poor Qpred. and MCC
values in all the methods. The �-turn is a rare structure in
contrast to regular secondary structures, helices and
�-sheets. The number of helical and sheet residues in
proteins are far greater than �-turn residues. Thus, it is
possible to achieve high MCC values for helix (0.60) and
�-sheet residue (0.52). However, for �-turn prediction,
even after inclusion of multiple alignment and secondary
structure, the maximum MCC value achieved is only 0.16.
Also, when there is an abundance of data belonging to
well-defined classes (helices, �-sheets), neural networks
perform extremely well. However, neural nets perform
poorly when the available data is sparse as the case of
�-turn prediction. It is possible to achieve high accuracy by
keeping equal number of �-turn and non �-turns for
training, which actually reduces the number of false
positives and false negatives. However if we move to a real
situation where �-turns are present in very small propor-
tion in proteins as compared to other secondary structures,
the algorithms learned on balanced data sets would not
work well.

In summary, this work is an attempt towards developing
highly accurate method for �-turns in proteins. Further
improvement of the suggested approach is possible with
further elucidation of protein and peptide X-ray struc-
tures, which will probably clarify the biological role, and
the occurrence of �-turns.
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