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ABSTRACT

Numerous studies have been performed for analysis and prediction of b-turns in a protein. This study focuses on analyzing,

predicting, and designing of b-turns to understand the preference of amino acids in b-turn formation. We analyzed around

20,000 PDB chains to understand the preference of residues or pair of residues at different positions in b-turns. Based on

the results, a propensity-based method has been developed for predicting b-turns with an accuracy of 82%. We introduced a

new approach entitled “Turn level prediction method,” which predicts the complete b-turn rather than focusing on the resi-

dues in a b-turn. Finally, we developed BetaTPred3, a Random forest based method for predicting b-turns by utilizing vari-

ous features of four residues present in b-turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is

comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict b-turn types

with better performance than other methods available in the literature. In order to improve the quality of prediction of

turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this

study, a web server has been developed for prediction of b-turns and their types in proteins. This web server also predicts

minimum number of mutations required to initiate or break a b-turn in a protein at specified location of a protein.
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INTRODUCTION

Proteins play a vital role in living organisms and hence

it is essential to understand the function of a protein.

The function of a protein depends upon its tertiary

structure, which in turn depends upon its secondary

structure. The secondary structure is classified mainly

into three broad categories: helix, sheet, and coil.1 The

coil region further splits into tight turns (a-turns, g-

turns, d-turns, p-turns, b-turns), bulges and random coil

structures.2,3 Among these structures, b-turns are the

most abundant type of turns; they constitute on an aver-

age of 25% of amino acids in proteins.1,4,5 They are

present in disproportionally large number in B-cell epi-

topes.6,7 The b-turns are commonly involved in media-

ting interaction between peptide ligands and their

receptors.8 In protein engineering, loop segments/hair-

pins are designed by introducing b-turns in proteins/

peptides.9 The structural stability of these peptides/hair-

pins is mostly determined by b-turns.10,11 Thus, under-

standing the formation of b-turns is helpful in

understanding various processes, interactions and its

contributions to the overall prediction of protein/peptide

tertiary structure.12,13

In the past four decades, several methods have been

developed to predict b-turns. Initially, statistical methods

were developed to predict b-turns.5,14,15 Chou-Fasman

used precalculated positional frequencies of residues.

Thornton improved Chou-Fasman method by calculating

the normalized amino acid positional frequencies. Using

these positional frequencies, BTURN and GORBTURN

were developed; GORBTURN was further improved in

1994 using revised set of frequencies. Chou improved

prediction using amino acid pair frequencies instead of
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single amino acid frequencies. Chou observed that inter-

action between first to fourth and second to third amino

acids plays a significant role in b-turn formation. Based

on this observation, Zhang and Chou proposed the 1–4

and 2–3 correlation model for the prediction of b-

turns.16 Chou’s group further improved their model

using sequence coupled approach that is based on the

first-order Markov chain.17 Most of the statistically

based methods were implemented in a web server

(BetaTPred) developed by Kaur and Raghava.18 These

statistical methods achieved a maximum Qtotal of 65.2%,

Qpredicted of 37.6%, Qobserved of 63.5%, and MCC of 0.26.

The first machine learning method was developed using

neural networks, which achieved an MCC of 0.20.19 Later,

Shepherd et al. developed a method BTpred that enhanced

the MCC to the 0.34, using secondary structure informa-

tion.20 Kim used k-NN to improve the MCC to 0.40,21

which was further improved to 0.42 (COUDES) by adding

propensities, secondary structure, and position specific

scoring matrix (PSSM).22 Kaur and Raghava developed a

two-layer neural network, which improved the MCC up

to 0.43 (BetaTPred2, BetaTurns).23,24 The MCC was fur-

ther improved to 0.45 by MOLEBRNN.25 Hu and Li used

increment of diversity, position conservation scoring func-

tion and secondary structure, which raised the MCC up

to 0.47.26 Zheng and Kurgan combined the predicted sec-

ondary structure from PSIPRED, JNET, TRANSSEC, and

PROTEUS2 to improve the performance.27 Kountouris

and Hirst used predicted dihedral angles apart from

PSSM and secondary structure and obtained an MCC of

0.49.28 Petersen et al. developed independent four models

for predicting four positions in b-turns and combined

these models with standard PSSM and secondary structure

model, and achieved the MCC of 0.50 (NetTurnP).4

These methods were developed for predicting residues

in b-turn, instead of predicting the complete b-turn.

Further, the available statistical details of b-turn forming

residues are outdated. Hence, the analysis has to be

updated with the latest PDB structures for better under-

standing of b-turn forming residues and different pairs

of residues. Biologists are more interested in understand-

ing and initiating or breaking b-turns at a given position

in a protein. In this study an attempt has been made to

address following issues, (i) analysis of b-turns to under-

stand positional preference of residues, (ii) propensity of

a complete turn and contribution of each residue, (iii)

models for predicting a complete b-turn, (iv) prediction

of all nine types of b-turns, (v) possible minimum muta-

tions required to initiate or break b-turns in a protein.

MATERIALS AND METHODS

Datasets

We used three types of datasets in this study,

“Unique,” “Standard nonredundant,” and

“Nonredundant updated” datasets. “Unique” dataset was

used for analyzing the preference of residues and residue

pairs in b-turns, and for calculation of different propen-

sity scores. To compare our prediction method with

other methods, we used “Standard nonredundant” data-

set. Finally, a new and updated “nonredundant” dataset

(with a large number of protein chains) was used for

development of a new prediction method. The model

developed with this dataset was implemented in

BetaTPred3 web server.

Unique dataset BT20142

This dataset contains a total number of 20,142 high-

resolution (<2.0 Å) PDB chains, extracted from the

ccPDB server.29 We also ensured that each protein chain

has a minimum of one b-turn. In this dataset, all the

protein chains are unique that is, no two protein chains

are identical to each other. We used this dataset for ana-

lyzing the preference of different type of residues in

b-turn at different positions and for calculation of pro-

pensity scores.

Standard nonredundant dataset BT426

The standard nonredundant dataset BT426 is a golden

dataset that is commonly used for benchmarking b-turn

prediction methods.30 BT426 dataset contains 426 pro-

tein chains with resolution better than 2.0 Å and the

sequence identity is <25%. Kaur and Raghava used this

dataset for the first time for benchmarking b-turn pre-

diction methods.31 This dataset has been used to com-

pare our method with existing methods as most of these

methods (BTpred,20 KNN,21 COUDES,22 BetaTPred2,32

BTSVM,33 MOLEBRNN,25 SVM,26 BTNpred,27 E-

SSpred,34 DEBT,28 NetTurnP4) have been evaluated on

this dataset. We performed sevenfold and fivefold cross-

validation of our method on BT426 dataset and com-

pared the results with existing methods.

Nonredundant updated dataset BT6376

We also created the latest nonredundant dataset

(BT6376) from ccPDB server.29 The minimum resolu-

tion of each PDB chain is better than 2 Å and the

sequence length varies from 50 to 1000 residues. This

dataset contains 6376 protein chains in which no two

protein chains have >30% sequence identity. In other

words, BT6376 dataset is a subset of BT20142 culled

with the sequence identity of <30%. We performed five-

fold cross-validation of our method to report the results

on the updated nonredundant dataset. The dataset

BT6376 created from PDB released in year 2014, whereas

dataset BT426 created from PDB released in year 2000.

Most of the protein chains or similar chains in BT426

are subsets of protein chains in BT6376. The percentage
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of b-turns in proteins is shown in Supporting Informa-

tion Figure F1 by histogram.

Assignment of b-turns and b-turn types

Promotif software package has been used to assign b-

turns in proteins.35 This is standard software, com-

monly used to assign b-turns in proteins. Promotif

assigns different types of b-turns for example, type I,

type I’, type II, type II’, type IV, type VIa1, type VIa2,

and type VIII. The b-turn types were assigned based

upon the dihedral angles (u/w) of the two central resi-

dues of four consecutive residues forming a b-turn. The

ideal values of these dihedral angles are given by Hutch-

inson and Thornton35 and are given in Supporting

Information Table S1.

Calculation of residue propensities

We calculated the propensity score of occurrence of

each amino acid in b-turn using the following equation

given by Hutchinson and Thornton:5

Pt jð Þ ¼ ft jð Þ
ft

(1)

where

ft jð Þ ¼ Number of residue j in turns

Number of residue j in proteins

and

ft ¼
Total number of residues in turns

Total number of residues in proteins

Apart from the amino acid propensity, we also calcu-

lated position based propensity of each amino acid in

b-turns. Since, four consecutive residues define a b-turn,

four position-based propensity scores were calculated: P1,

P2, P3, and P4 defining first, second, third, and fourth

positions in b-turns. Following equation was used for cal-

culating positional propensities of pairs of amino acids:

Pti jð Þ ¼ fi jð Þ
fi

(2)

where

fi jð Þ ¼ Number of residue j at position i in turns

Number of residue j in proteins

and

fi ¼
Total number of residues at position i in turns

Total number of residues in proteins

Positional preferences of amino acids

We compute positional preferences of each type of residue

and pairs of residues. Based on the position of residues in b-

turn, we compute propensity of six pairs of residues: (i) P1,2

(residues at positions 1 and 2); (ii) P1,3; (iii) P1,4; (iv) P2,3;

(v) P2,4; and (vi) P3,4. Similarly, we also calculate propensity

of three consecutive residues in b-turns (P1,2,3 and P2,3,4)

and propensity of all four residues in b-turns. We calculated

the propensity of all residue pairs in the dataset using the Eq.

4 with i defined as a pair of amino acids.

Input features for prediction of b-turns

Different input features and their combinations were

used for development of various models. We used binary

profiles, PSSM profiles, predicted secondary structure

and b-turn propensity score as input features.

Binary profiles

We converted fixed window length patterns into binary

numbers by a vector of dimension N 3 20 where N is

number of residues in a pattern. Every amino acid is rep-

resented by a vector of dimension 20 (for example, Ala is

represented 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).36

Protein profiles

It has been shown in past that evolutionary informa-

tion in the form of profile provides more information

about a protein than its amino acid sequence.37,38 In

this study, we used HHblits (HMM-HMM-based light-

ning-fast iterative sequence search)39 for generating

PSSM profiles. In the case of protein profile, each residue

is represented by a vector of dimension 20.36

Secondary structure

We used PSIPRED predicted secondary structure as

input feature in b-turn prediction methods.40 In this

study, we used HHblits instead of PSI-BLAST for generat-

ing multiple sequence alignments.39 In order to develop

b-turn prediction method, we represented predicted sec-

ondary structure by a vector of dimension three where

each dimension contains predicted propensity of helix,

strand, and coil, respectively. The usage of predicted sec-

ondary structure information in the development of mod-

els might induce a bias as PSIPRED is also trained on

existing structures in the PDB. However, PSIPRED is a

standard method for predicting secondary structure of

proteins and is used widely in the existing b-turn predic-

tion methods. In order to training our classifier, we used

actual secondary structure assigned using DSSP.40,41

Propensity scores

We calculate propensity scores of each residue at each

position using Eqs. (1) and (2); in addition, we compute
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the propensity score of a pair of residues. These propen-

sity scores were used for developing propensity-based

models for predicting b-turns.

Classifiers

In this study, we developed prediction models using

various classifiers (for example, Random Forest,42

IBK,43 Logistic,44 J48,45 Multilayer Perceptron,46 Na€ıve

Bayes47) implemented in Weka package.46 It was

observed that Random forest classifier is most suitable

for predicting b-turns in a protein. In this study, we

have used the FastRandomForest, which is a re-

implementation of Random Forest in Weka with better

speed and memory utilization.

Turn level prediction

Till date, b-turn prediction methods follow residue

level prediction, where each residue was predicted as

either b-turn or non-b-turn. As four consecutive resi-

dues form a b-turn, a single or double or triple residues

predicted as b-turn and its neighboring residues being

predicted as non-b-turn, is unreasonable. We therefore

focused on turn level prediction, where four consecutive

residues were predicted as b-turn. A sliding window of

four residues was used for the prediction. If all the four

residues of the sliding window make a b-turn then it

was defined as a positive pattern and if any of the resi-

due(s) in the window is a non-b-turn then the pattern

was defined as a negative pattern. The turn level classifi-

cation enables realistic prediction as compared with resi-

due level prediction approaches. Various models were

developed by increasing the length of sliding window

from 6 to 20 to observe the effect of neighboring resi-

dues on the prediction. With a sliding window of four

residues, a vector of size 93 was constructed, with PSSM

(4 3 20 5 80), secondary structure (4 3 3 5 12) and

propensity score of tetrapeptide (1 3 1 5 1) as input fea-

tures. The turn level approach combined with propensity

score was used for prediction of nine b-turn types. Sepa-

rate models were developed for type I, type I’, type II,

type II’, type IV, type VIa1, type VIa2, type VIb, and

type VIII using “one versus rest” approach. Therefore,

for each turn type, the model was developed considering

one b-turn type as positive set and rest of the data as

negative set.

Residue level comparison

In order to compare our turn level prediction method

with previous b-turn prediction methods, which were

developed at residue level, we converted our turn level

prediction into residue level prediction for an overall

comparison. With a window length of four, each residue

occurs in four windows/patterns and each pattern has a

predicted turn score. Out of these four turn scores, we

assigned the maximum score to the concerned residue.

Propensity based prediction

Statistical models were developed using propensity

scores for predicting b-turns at turn level. The statistical

method is simple and computationally fast, as it does

not require complex models for prediction. We used dif-

ferent propensity scores for prediction of b-turns as

given below: (i) propensity of individual residues; (ii)

position-wise propensity of residues; (iii) pair-wise resi-

due propensities; (iv) propensities of tripeptides; (v) tet-

rapeptide propensities; and (vi) Hybrid (average of all

propensity scores).

Designing of prediction method

The overall architecture of BetaTPred3 is displayed in

Figure 1. The protein sequence is converted into sliding

window of four consecutive residues. If these four resi-

dues are making a b-turn we label it as positive, else we

label it as negative data. Each window is transformed

into a feature vector incorporating PSSM profile gener-

ated by HHblits and predicted secondary structure by

PSIPRED and propensity score of the tetrapeptide. The

proposed method predicts whether the four residues

make a b-turn or non b-turn instead of predicting a sin-

gle residue to be in b-turn or non b-turn.

Cross validation and performance measures

In this study, we performed a fivefold cross validation

technique on all datasets. We also performed sevenfold

cross validation on BT426 dataset to compare with exist-

ing methods. For performance measurement, we used

various measures: (1) Qtotal (or prediction accuracy) is

Figure 1
Flowchart of BetaTPred3 Algorithm displaying the development of

BetaTPred3.
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the percentage of correctly classified residues. (2) Qobs

(observed/sensitivity) is the percentage of observed b-

turns that are correctly predicted. (3) Qpred (predicted)/

PPV (predicted positive value) is the percentage of cor-

rect prediction of b-turns. (4) Specificity is the percent-

age of correct prediction of non b-turns. (5) MCC

accounts for both over and underpredictions. (6) Area

under curve (AUC) was also calculated by plotting sensi-

tivity against the false positive rate.48

RESULTS

Analysis of b-turns in proteins

The BT20142 dataset was used for calculating the pro-

pensity score of residues and pair of residues at different

positions in b-turn. An excel sheet with all the analysis

and propensity values can be accessed at http://crdd.

osdd.net/raghava/betatpred3/download.html#analysis.

Following is a brief discussion of the analysis we

performed.

b-turn forming residues

In this study, we observed that proline and glycine

have the highest propensity scores and seem to play a

major role in b-turn formation in proteins followed by

asparagine and aspartic acid (Table I). Position wise anal-

ysis on the preference of amino acids in b-turns empha-

sizes the importance of residues proline, aspartic acid

and asparagine at positions 1 and 2; glycine, asparagine

and aspartic acid in position 3; and glycine, asparagine,

proline and cysteine in position 4. We further observed

that (i) proline is mostly favored at second position in

b-turn, (ii) glycine favors third and fourth positions,

(iii) asparagine at third position, and (iv) cysteine at first

and fourth positions, which might be due to the stabili-

zation of b-turn by forming a disulfide bridge between

thiol group of first and fourth cysteine residues in pro-

teins. Cysteine is not a strong b-turn former and is less

favored at second and third positions.

b-turn breaking residues

The residues that are least preferred in b-turn forma-

tion are also important, as they would help to break b-

turns. Analysis of the propensity scores reveals that iso-

leucine is the least preferred residue in b-turn formation

followed by leucine, valine and methionine. Positional

preferences suggest that isoleucine is the least preferred

in all four positions and can be referred as the strongest

b-turn breaker. Following isoleucine, valine (at position

first and third) and leucine (at position second and

fourth) are least preferred residues (Table I).

Pair of residues as b-turn formers and breakers

Positional preferences of the pair of amino acids corre-

late well with the analysis of amino acid positional pref-

erences. It was observed that proline is dominated at

second position for example, P1-2 (DP, NP, HP, CP, and

so forth), P2-3 (PG, PN, PD, PH, and so forth), and P2-

4 (PC, PG, PT, PH, and so forth). Similarly, asparagine

and glycine are preferred at third and fourth positions,

e.g. P1-3 (DN, CN, NN, PN, VG, PG, CG, and so forth),

P2-3 (PG, PN, NG, DN, EN, and so forth), and P3-4

(DG, NG, GQ, GK, NN, NP, and so forth). As expected,

pair of cysteine residues are the most favored when cys-

teine occupies first (P1) and fourth positions (P4). Fur-

ther analysis suggests that when second position is

occupied by proline, possible b-turn formers at first

position are aspartic acid, asparagine and histidine; at

the third position are glycine, asparagine and aspartic

acid; while at the fourth position, cysteine and glycine

are the most favored ones (Fig. 2). The pairing of valine-

isoleucine, valine-leucine, isoleucine-isoleucine, methio-

nine-leucine, and valine-valine are the strongest b-turn

breakers, followed by pairs of isoleucine-leucine, methio-

nine-isoleucine and methionine-methionine, and so

forth.

Role of tripeptide combinations as b-turn formers and
breakers

In the case of tripeptide, aspartic acid-proline-

asparagine, cysteine-glutamine-asparagine, histidine-

proline-asparagine, methionine-tyrosine-lysine are the

most preferred combinations at P1-2-3, while cysteine-

tyrosine-cysteine, proline-asparagine-cysteine, proline-

aspartic acid-glycine, proline-glycine-glutamine and

Table I
Propensity Score of Residues in b-Turns and Score Based upon their

Positional Preferences in b-Turns

Residue b-turns P1 P2 P3 P4

P 1.58 1.62 2.33 1.13 1.25
G 1.58 1.19 1.20 2.10 1.83
N 1.52 1.47 1.27 2.05 1.27
D 1.46 1.57 1.40 1.80 1.09
S 1.20 1.32 1.24 1.13 1.12
H 1.13 1.20 1.00 1.20 1.12
T 1.01 1.06 0.92 0.98 1.09
C 1.01 1.27 0.73 0.86 1.18
K 0.96 0.83 1.16 0.89 0.97
Y 0.93 1.03 0.86 0.91 0.94
W 0.89 0.89 0.84 0.83 0.98
E 0.88 0.75 1.10 0.89 0.79
Q 0.87 0.79 0.89 0.85 0.96
F 0.85 0.99 0.72 0.80 0.89
R 0.84 0.77 0.89 0.82 0.88
A 0.77 0.79 0.88 0.62 0.79
M 0.67 0.75 0.60 0.54 0.79
V 0.65 0.69 0.61 0.48 0.81
L 0.64 0.77 0.59 0.51 0.69
I 0.59 0.68 0.57 0.45 0.68

The table is sorted in descending order based on residue propensity in b-turns.
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proline-histidine-tryptophan are preferable at P2-3-4

positions. This is consistent with the observations of sin-

gle as well as pair wise analysis, except glutamine, which

is also favored with proline and glycine (Fig. 3). There

are few tripeptides having high propensity score for both

P1-2-3 and P2-3-4 positions e.g. WPS, WPW, PHW, and

so forth. We observed a unique case of cysteine-tyrosine-

cysteine (CYC), which is favored in b-turns, if followed

by glycine. Out of 81 CYC that form b-turn, 77 have gly-

cine at first or fourth position. Majority of these protein

chains having CYC in b-turn are pancreatic or venom

phospholipase, suggesting a possible role of CYC tripep-

tide in stabilization of protein structure.

Tetrapeptides as b-turn formers and breakers

Due to the high number of combinations of tetrapep-

tides (160,000), the occurrence of some of these combi-

nations in the dataset becomes less, accounting for one

or two instances. Therefore, many such low occurrence

combinations occurred in b-turns that made their pro-

pensity value higher. To identify strong b-turn formers,

tetrapeptides having higher propensity score and higher

occurrences (at least 50 turns) were selected for analysis.

The observations were consistent with the residue wise,

pair wise and tripeptide analysis. In general, the propen-

sity of a tetrapeptide was high if the content of b-turn

formers are high and are present at their favored posi-

tions (Supporting Information Table S2). Some of the

most favored tetrapeptides are DGDT, GPDG, NAGD,

AGDR, IGIG, DKYG, GDSG, DKGT, EKYG, GIGG,

GAGG, LPDG, LSSG, VNGH, YKGQ, DENG, TPDG,

and DSDG, and so forth A list of top 20 most frequent

and rare tetrapeptides forming b-turns are shown in

Supporting Information Table II. It is also interesting to

know the tetrapeptides, which always form b-turn

(ATWC, WPRR, HKGQ, WPNQ, CTSH, NPHW, and so

forth) and that never form b-turn (LRID, LRLK, EMLR,

TGTW, AALI, RLKI, etc). A brief list of these interesting

peptides is shown in Supporting Information Table S3

and comprehensive list is provided in excel file.

Prediction of b-turns using statistically
based method on BT6376 dataset

We developed a propensity-based method for b-turn

prediction and achieved reasonable accuracy (Table II).

Different propensity scores were pre-calculated from

Figure 2
Pairs of amino acids at different positions, which are most favored in the formation of b-turns.
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BT20142 dataset and applied on BT6376 dataset. For

performance calculation, we averaged the propensity

scores of all residues/residue pairs in a b-turn and used

it as a threshold for the prediction of b-turns. The per-

formance of propensity-based method improved from

position wise propensity based prediction (0.18 MCC) to

pair wise propensity based prediction and finally reaches

maximum (0.27 MCC) using tetrapeptide propensity.

The results show the effect of pairing; the performance

of prediction method increase with number of increase

in pair (for example, two to three, three to four).

Prediction of b-turns on BT426 dataset

The BT426 developed in 2000 is the golden dataset for

benchmarking of a new b-turn prediction method with

existing methods. The BT426 dataset has 9481 b-turns

out of 93,702 total patterns of tetrapeptides. We per-

formed fivefold cross validation for evaluating our

method on this dataset. Among various classifiers (Ran-

dom forest, IBK, Logistic, J48, Multilayer Perceptron,

and Na€ıve Bayes) used for the prediction of b-turns, we

found Random forest classifier performed the best (Sup-

porting Information Table S4–S7). We developed three

binary-based turn level prediction models (Table III)

using different input features. The simple binary-based

model showed a poor MCC of 0.15 and the performance

increased with the inclusion of secondary structure

(MCC: 0.31) and b-turn propensity score (MCC: 0.37).

These results indicate an important role of secondary

structure in the performance improvement. Similarly, we

Figure 3
Tripeptides, which are favored by the formation of b-turns and having high propensity score for P1,2,3 and P2,3,4 and low propensity score at
other positions.

Table II
The Performance of Propensity Based Method Developed for Predicting b-Turns, Evaluated on BT6376 Dataset

Type of propensity Qpred Qobs Specificity Qtotal MCC AUC

Residue propensities 19.97 41.86 82.95 79.16 0.18 0.70
Position wise residue

propensities
23.35 40.06 86.63 82.34 0.21 0.71

Pair wise propensities 17.88 65.63 69.37 69.02 0.21 0.72
Tripeptide propensities 19.63 57.76 75.96 74.28 0.22 0.72
Tetrapeptide propensities 25.76 52.07 84.75 81.74 0.27 0.77
Hybrid 16.78 73.71 62.85 63.86 0.22 0.73

H. Singh et al.
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developed three PSSM based models; simple PSSM based

model yielded an MCC of 0.31 and the inclusion of sec-

ondary structure and b-turn propensity enhanced the

MCC up to 0.35 and 0.42, respectively as shown in Table

III. The combination of PSSM, secondary structure and

b-turn propensity score showed the best performance

among various features (Qpred: 39.4%; 61.5% Qobs:

61.5%; specificity: 89.4%; Qtotal: 86.6%; MCC: 0.42 and

AUC: 0.87).

It was observed that increasing the window length

from four to twenty, has no effect on the performance of

turn level prediction (Supporting Information Table S8).

b-turns have fixed length of four residues and are pres-

ent in loop regions of the protein. The PSSM profiles of

the loop region are not conserved due to high variation

in sequence profile. Thus, the information from the four

residues defining a b-turn is sufficient to predict the pat-

tern as b-turn or non-turn.

For a fair comparison with previously developed

methods of b-turn prediction, which are based on resi-

due level prediction we transformed the turn level pre-

diction score into residue level prediction score as

described in Residue Level Comparison section. The

best binary based method achieved the MCC of 0.46

and the best PSSM based method achieved 55.5% Qpred,

76% Qobs, 80% specificity, 79% Qtotal, 0.51 MCC and

0.86 AUC (Table IV).

Using the best performing model of PSSM, secondary

structure and b-turn propensity score, we developed the

new method, BetaTPred3. As shown in Table V, the

Table IV
The Performance of our Models at Residue Level Developed on BT426 Dataset

Input feature Input features Qpred Qobs Specificity Qtotal MCC AUC

Binary 80 49.32 19.82 93.36 75.28 0.19 0.67
Binary 1 SS 92 41.49 89.59 58.81 66.38 0.42 0.80
Binary 1 SS 1 score 93 50.37 76.29 75.49 75.69 0.46 0.83
PSSM 80 47.46 72.60 73.80 73.50 0.41 0.81
PSSM 1 SS 92 50.24 78.87 74.53 75.59 0.47 0.84
PSSM 1 SS 1 score 93 55.5 76.0 80.0 79.1 0.51 0.86

Table V
Comparison of our Method with Existing Methods Developed for Predicting b-Turn, the Performance was Evaluated at Residue Level on BT426

Dataset

Method Qtotal Qpred/PPV Sensitivity/Qobs Specificity MCC AUC

BetaTPred3 79.1 55.5 76 80 0.51 0.86
BetaTPred3-Tweak 81.8 58.4 64.4 89.5 0.5 0.86
BetaTPred3-7fold 79 55.3 75.8 80.1 0.51 0.86
NetTurnP 78.2 54.4 75.6 79.1 0.50 0.86
DEBT 79.2 54.8 70.1 N/A 0.48 0.84
E-SSpred 80.9 63.6 49.2 N/A 0.44 0.84
BTNpred 80.9 62.7 55.6 N/A 0.47 N/A
SVM 79.8 55.6 68.9 N/A 0.47 0.87
MOLEBRNN 77.9 53.9 66 N/A 0.45 0.83
BTSVM 78.7 56 62 N/A 0.45 N/A
BetaTPred2 75.5 49.8 72.3 N/A 0.43 0.77
COUDES 75.5 49.8 66.6 N/A 0.41 N/A
KNN 75 46.5 66.7 N/A 0.4 N/A
BTPRED 74.9 55.3 48 N/A 0.35 N/A
1-4 and 2-3 Correlation model 59.1 32.4 61.9 N/A 0.17 N/A

Table III
The Performance of Turn Level Prediction Method Developed Using Different Features on BT426 Dataset

Input feature Input features Qpred Qobs Specificity Qtotal MCC AUC

Binary 80 17.93 43.57 77.56 74.12 0.15 0.65
Binary 1 SS 92 23.07 79.34 70.22 71.14 0.31 0.80
Binary 1 SS 1 score 93 30.26 69.35 82.01 80.73 0.37 0.84
PSSM 80 31.99 48.1 88.49 84.4 0.31 0.79
PSSM 1 SS 92 33.25 55.58 87.44 84.21 0.35 0.84
PSSM 1 SS 1 score 93 39.44 61.45 89.38 86.55 0.42 0.87

PSSM: position specific substitution matrix; SS: predicted secondary structure; score: propensity score of b-turn.
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performance of BetaTPred3 was comparable to existing

residue level b-turn prediction methods. The BetaTPred3

with sevenfold cross validation achieved 55.3% Qpred,

75.8% Qobs, 80.1% specificity, 79% Qtotal, 0.51 MCC and

0.86 AUC. After tweaking the results, we achieved the

highest accuracy of 81.8% with highest MCC of 0.51.

The term tweaking refers to reporting the highest Qpred,

Specificity, and Qobs at 65% from the same prediction

model. The turn level prediction method is nonambigu-

ous in terms of b-turn prediction that is, either the four

consecutive residues will be classified as b-turn or non-

turn that represents the realistic approach.

The turn level prediction approach was further used to

predict the nine b-turn types in BT426 dataset. Due to

the small size of BT426 dataset, type II’, VIa1, VIa2 and

VIb comprises less than 0.5% of total data. For a fair

comparison between BetaTPred3 with different b-turn

type prediction methods, the turn level prediction score

was transformed to residue level prediction score. We

achieved an MCC of more than 0.30 for b-turn type I, I’,

II, II’ and VIb (Table VI). In the case of b-turn type

VIa2 and VIII the MCC was below 0.20. It was observed

that BetaTPred3 performs better than existing methods

in the prediction of all b-turn types, except type IV and

VIII. In the case of type IV there are sufficient data for

training the model, yet the performance remains poor

because type IV turns have, no defined u and w angle

for i 1 1 and i 1 2 residues. For the first time,

BetaTPred3 was able to predict b-turn type VIa1 and

VIb with acceptable MCC.

Prediction of b-turns on BT6376 dataset

In real life scenario, the performance of a method on

unknown data improves with an increase in the data size.

Thus, we created a new and large nonredundant dataset hav-

ing 6376 protein sequences using the ccPDB server. We per-

formed fivefold cross validation of our method on this

dataset. The same optimization parameters were used to

develop Random forest based model. The model achieved

87.08% Qtotal, 38.02% Qpred, 63.61% Qobs, 89.46% specific-

ity, 0.43 MCC and 0.88 AUC (Table VII, Fig. 4). We

observed an increase of 0.1 in MCC and 4% increase in

AUC as compared with the performance on BT426 dataset.

As Qpred is inversly proportional to Qobs, if we increase

Qpred then Qobs will decrease accordingly. For example at

61.24% Qpred, the Qobs decreases to 29.89%, but specificity

increases to 98.08% (Supporting Information Table S9).

Thus, at higher Qpred the predicted b-turn will be highly

accurate, but fewer b-turns will be predicted. Similarly, at

lower Qpred, more b-turn will be predicted with low accu-

racy of correct prediction. The b-turn type prediction per-

formance improved due to sufficient training data as

compared with smaller BT426 dataset. BetaTPred3 achieved

Table VI
The Performance of our Model and Existing Methods Developed for Predicting Type of b-Turns, all Methods Evaluate at Residue Level on Dataset

BT426

b-Turn types b-Turn count

b-Turn prediction methods

Mole-brnn Cou-des Beta-turns DEBT Net-TurnP BetaT-pred3

Type I 2752 0.31 0.30 0.29 0.36 0.36 0.39
Type I' 301 0.35 0.22 N/A N/A 0.23 0.47
Type II 982 0.33 0.30 0.29 0.29 0.31 0.42
Type II' 167 0.13 0.10 N/A N/A 0.16 0.31
Type IV 2871 0.23 0.10 0.23 0.27 0.27 0.26
Type VIa1 43 N/A N/A N/A N/A N/A 0.27
Type VIa2 18 N/A N/A N/A N/A N/A 0.13
Type VIb 70 N/A N/A N/A N/A N/A 0.38
Type VIII 724 0.10 0.07 0.02 0.14 0.16 0.14

Table VII
The Performance of our Models Developed for Predicting b-Turn Types, Models were Evaluated at Turn Level on BT6376 Dataset

b-Turn types No. turns Qpred Qobs Specificity Qtotal MCC Max. MCC

b-turn 131,862 38.02 63.61 89.46 87.08 0.43 0.43
Type I 42,393 16.35 68.95 88.91 88.3 0.3 0.35
Type I' 4353 45.03 44.84 99.68 99.36 0.45 0.47
Type II 13,559 21.09 62.01 97.31 96.9 0.35 0.44
Type II' 2643 32.98 34.54 99.66 99.34 0.33 0.37
Type IV 38,201 11 54.46 87.46 86.55 0.2 0.22
Type VIa1 654 28.18 38.23 99.65 99.42 0.33 0.38
Type VIa2 188 19.12 34.57 99.51 99.29 0.25 0.28
Type VIb 1082 26.85 46.3 99.48 99.26 0.35 0.38
Type VIII 10,111 12.97 25.25 98.45 97.78 0.17 0.21
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MCC above 0.31 for all b-turn types, except type IV and type

VIII prediction (Table VII, Fig. 4). The variation between best

MCC and maximum MCC is due to less number of b-turn

types as compared with non-b-turn in the respective dataset.

Figure 4 shows the ROC/AUC value of BT6376 dataset

and nine b-turn types. It was observed that b-turn and

types have ROC value higher than 0.85, except for type IV

(0.84) and type VIII (0.82). The ROCR package49 in R sta-

tistical language50 is used to illustrate the Figure 4. Using

the same optimization parameter of Random Forest, there

is a marginal difference in prediction quality across smaller

BT426 and larger BT6376 dataset. Evaluating BetaTPred3

on small and large dataset showed that both models are

very stable with only 0.53% difference in Qtotal.

IMPLEMENTATION OF WEB
SERVER

To serve the scientific community, we developed a web

server BetaTPred3, available at http://crdd.osdd.net/

raghava/betatpred3. The web server can be used to pre-

dict b-turns and types in proteins using turn level pre-

diction approach. The BetaTPred3 web server is divided

into four modules, each having different function.

1. Prediction: This module implements Random forest

based model build on BT6376 dataset for the predic-

tion of b-turns.

2. Propensity: This module implements various propen-

sity scores based method for the prediction of b-

turns. The output displays the normalized propensity

score for each turn.

3. Turn type: This module helps in the prediction of

nine b-turn types in a given protein sequence.

4. Design: This module is a unique feature of BetaTPred3,

which helps the user in designing (initiating or break-

ing) a b-turn at desired positions in the protein. In

this module, first all possible 80 mutants are generated

for a given pattern of four residues. Secondly, b-turns

propensity of each mutant peptide is computed using

our statistical models. The mutant amino acid of the

mutant pattern having the highest and the lowest prob-

ability score to form b-turn are represented as “b-turn

initiating mutation” and “b-turn breaking mutation”

respectively. The design module displays the probable

mutation to increase or decrease the b-turn probability

score based on the residue and pair wise residue b-turn

propensity score obtained from PDB.

DISCUSSION

b-turns play an important role in defining the tertiary

structure of proteins. Initially, statistical based methods

were developed to predict b-turns, which achieved the

maximum MCC of 0.26. These methods were based on

the frequency and positional preference of amino acids

in b-turn using very small dataset of protein structures.

Later, machine learning methods were developed, which

enhanced the MCC to 0.50. The latest method NetTurnP

utilizes the positional preference of amino acids at first,

second, third, and fourth positions for improving the

performance. Thus, it can be concluded that positional

preference of amino acids in b-turns enhances the pre-

diction performance. In lieu of these methods, we have

performed an exhaustive study of positional preferences

of amino acids, pair of residues, tripeptides and tetrapep-

tides on a large dataset of 20142 PDB chains.

We observed that glycine, proline, asparagine, and aspar-

tic acid are favored in b-turns and are called b-turn for-

mers. Glycine having flexible side-chain movements can

turn the polypeptide chain to 180� and initiate turns. Pro-

line is known to form kinks and de-regularize the ordered

local structure of proteins and therefore, is preferred to

form irregular secondary structures like b-turns. Asparagine

side-chain can form hydrogen bonds with the peptide

backbone; it is found near the beginning and ending of

helices and turns. Aspartic acid and asparagine differ only

in their functional groups at C-gamma position in which

the former has amide group and the latter has a hydroxyl

group. Despite different functional groups, both asparagine

and aspartic acid have similar capability of forming hydro-

gen bonds. b-turn breakers include isoleucine, leucine,

valine and methionine, which are mainly hydrophobic in

nature. It was also observed that different amino acids have

different positional preferences e.g. proline is favored at first

and second positions, asparagine and aspartic acid at third

position, while glycine at third and fourth positions.

Figure 4
ROC plot using turn level prediction of b-turn types on BT6376 dataset
by BetaTPred3.

Prediction of Beta Turn in Proteins

PROTEINS 919

http://crdd.osdd.net/raghava/betatpred3.
http://crdd.osdd.net/raghava/betatpred3.


We compare residue propensity scores obtained in this

study and propensity score described in the previous study

obtained from 12 proteins;15 the trend of prominent b-

turn formers is generally the same. However, we noticed a

change in the order of amino acids (Supporting Informa-

tion Table S10). Glutamate and glutamine, which were

prominent b-turn breakers in the previous analysis, are

neutral while methionine and isoleucine, which were not

prominent b-turn breakers, are observed as potential break-

ers in this study. Position wise analysis has a similar trend

except that the first and fourth positions prefer proline and

glycine, respectively as the prominent b-turn forming resi-

dues in this study, instead of tryptophan, which occurred

in the previous analysis. Another analysis performed by

Chou and Fasman14 based on 29 proteins is more similar

to our study with respect to the residue wise propensities

of prominent b-turn formers and breakers (Supporting

Information Table S10). The residue wise propensities cal-

culated by Hutchinson and Thornton5 (1994) also follow

the same trend with our analysis, with a change in the

order of amino acids as prominent b-turn formers and

breakers (Supporting Information Table S10).

Next, we calculated the pair wise propensity at positions

P1-2, P1-3, P1-4, P2-3, P2-4, and P3-4. In the case of P1-

2, proline is favored at second position; asparagine, glycine,

and aspartate are favored at third position in P1-3. The

pair of CC is the most favored pair at P1-4, due to the for-

mation of disulfide bonds, followed by glycine dominated

at fourth position. Similarly, proline is more favored at P2-

3, P2-4, and glycine and asparagine more favored at P3-4

than other amino acid residues. Therefore, the positional

preferences of pair of amino acids have a similar tendency

to the positional preference of single amino acids. Although

Zhang and Chou have performed the pair wise analysis,

they focused only on P1-4 and P2-3 pairs (1-4 and 2-3 cor-

relation model) for improving b-turn prediction. Com-

pared with the previous analysis by Zhang and Chou

(based on only 29 proteins), there is a vast difference in

the residue pair preferences at positions P1-4 and P2-3.

Residue pairs such as GQ, GR, FF, GM, KW, QW, DI, GE,

and so forth (generally having glycine at P1) are prominent

at P1-4 in the previous analysis. However, our results

showed the dominance of residue pairs CC, DG, PP, DT,

NG, TG, CG, PG, GG, and so forth (glycine at P4) at P1-

4. In the case of P2-3, residue pairs such as GF, CH, GH,

YH, GN, NC, GA, GK, and so forth are favored in the pre-

vious analysis whereas PG, PN, PD, NG, PH, DN, EN, and

so forth are preferred in the present analysis. This noticea-

ble difference is due to the under-representation of residue

pairs with a small dataset of 29 proteins. In the present

study, b-turn propensity score for all the residue pairs have

been computed with an updated large dataset and the

results are comprehensive and more reliable than other

existing studies.

Further, tripeptides at P1-2-3 favors proline and glycine/

asparagine at second and third positions while glycine is

more favored at third and fourth positions in P2-3-4 tripepti-

des. In the case of tetrapeptides, b-turn forming residues are

dominated in b-turns, but pairs of b-turn breakers strongly

restrain the formation of b-turns, especially pairs having iso-

leucine, leucine, or valine. We also observed few tetrapeptide,

which always form b-turns. These tetrapeptides have b-turn

formers at their preferred positions. These tetrapeptides are

devoid of hydrophobic residues, except tryptophan, which is

the most frequent residue among all hydrophobic residues.

We also observed that few tetrapeptides never occurred in b-

turns; these tetrapeptides have two (or more) residues being

hydrophobic in nature. Together, these tetrapeptides (always

or never observed in b-turns) can be used to initiate or break

b-turns in proteins of interest.

We introduced a turn level prediction approach for the

prediction of complete b-turns and non-b-turns in proteins.

Although the ability of turn level prediction is almost equal

to the existing methods, it has two major advantages over res-

idue level prediction. The prediction results are realistic with

no ambiguity that is, four consecutive residues are predicted

as either b-turn or nonturn. The proposed algorithm consists

of a single model for prediction as compared with NetTurnP

that has two steps using six different models. For the first

time, BetaTPred3 was able to predict the b-turn type VIa1

and VIb, which are rare in BT426 dataset and has better/com-

parable performance for the rest of b-turn types. In order to

improve the b-turn prediction method, we developed a new

model based upon 6376 PDB chains. Finally, we have devel-

oped a web server BetaTPred3 for the prediction and design-

ing of b-turn and its types. For the first time, we have

developed a systematic module that helps biologists in under-

standing the positional effect of pairs of amino acids in b-

turn formation in a given protein. Further, the users will be

able to initiate or break a b-turn in a given protein using sta-

tistical based prediction method.

Our study will be helpful to the scientific community in

better understanding of b-turn formation. In the past, experi-

ments have been performed to introduce b-turn, especially in

peptides, for better stability. The propensity scores of residues

and pairs of residues at different positions of b-turns and

whole b-turn propensity will be helpful in better understand-

ing and designing of b-turn in proteins/peptides.
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