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Abstract

Background

Mycobacterium tuberculosis (M.tb) is the causative agent of tuberculosis, killing ~1.7 million
people annually. The remarkable capacity of this pathogen to ebeapest immune systegm
for decades and then to cause active tuberculosis disease, Mhtikassuccessful pathogen.
Currently available anti-mycobacterial therapy has poor congdialue to requirement [of
prolonged treatment resulting in accelerated emergence ofebistant strains. Hence, there
is an urgent need to identify new chemical entities with novelhamsm of action and
potent activity against the drug resistant strains.

Results

This study describes novel computational models developed for pngdickibitors againgt
both replicative and non-replicative phase of drug-toleMrb under carbon starvation
stage. These models were trained on highly diverse dataset ot@ifmunds using foyr
classes of binary fingerprint namely PubChem, MACCS, EStateSt8ucture. We achieved
the best performance Matthews correlation coefficient (MC@).46 using the model basged



on MACCS fingerprints for replicative phase inhibitor datasetcdee of non-replicati\/le
phase, Hybrid model based on PubChem, MACCS, EState, SubStructure fimigerpr
performed better with maximum MCC value of 0.28. In this study, we fsown that
molecular weight, polar surface area and rotatable bond count of inhifiéplicating and
non-replicating phase) are significantly different from non-inbiit The fragment analysis
suggests that substructures like hetero_N_nonbasic, heterocyclmxylar ester, angd
hetero_N_basic_no_H are predominant in replicating phase inhibitors whieo et
ketone, secondary_mixed_amine are preferred in the non-replicative iphéstors. It was
observed that nitro, alkyne, and enamine are important for the maeaanibiting bacilli
residing in both the phases. In this study, we introduced a new hfgdrased on Matthews
correlation coefficient called MCCA for feature selection aodnfl that this algorithm (s
better or comparable to frequency based approach.

Conclusion

In this study, we have developed computational models to predict ppasiic inhibitorg
against drug resistant strains Bftb grown under carbon starvation. Based on simple
molecular properties, we have derived some rules, which would be ugsefudbust
identification of tuberculosis inhibitors. Based on these observationbawe developed |a
webserver for predicting inhibitors against drug toleravitb H37Rv available 3
http://crdd.osdd.net/oscadd/mdri/.

—

Introduction

Tuberculosis (TB), a disease causedNbyb kills around 1.7 million people every year
despite the availability of effective chemotherapy for mdranthalf a century [1]. The
antibiotic resistant strains dfl.tb have arisen primarily due to poor compliance resulting
from prolonged therapy [2]. The emergence of multiple drug-resi¢MbBiR), extensive
drug-resistant (XDR) strains, and its association with HIV $@serely affected the fight
against TB [3]. Mathematical models have predicted that theRMIB and XDR-TB
epidemics have the potential to further expand, thus threatening ttessuaf TB control
programs attained over last few decades [4-6].

In humans, the pathogenic cycle of TB consists of three phasa} §n|:active TB disease
phase with actively replicating bacteria; ii) a latent phagwrein bacteria achieves a
phenotypically distinct drug resistant state; and iii) a reattn phase. The active TB
disease phase is characterized by exponential increase ddthiogen, and latent phase is
characterized by dormant phase in which pathogen remains metabolicalgentiand is not
infectious. However, the reactivation phase is characterizedabgition of latent infection
into active TB disease. The reactivation of the disease ocawary 10% of patients with
functional immune system and no separate dataset of inhibitors $quithse of pathogenic
cycle is available. Therefore, in this study, we have used twee phlabitors namely active
and latent phase.

In past, researchers across the globe have deposited high throegb@uimental data from
M.tb growth inhibition assays. In PubChem, numerous datasets consisting tfidspecific
target based as well as cell-based inhibition assays araldgalltilizing these datasets, few
computational models have been developed in past [8-11]. However, thess atedif little
significance as they failed to contemplate the effect of patenits on the drug-resistant



M.tb strains grown under nutrient starvation condition. Furthermore, thesessumgs not
distinguish the inhibitors based on their activity in different phafs&B. Therefore, it is
important to develop new theoretical models for predicting inhibit@swould be effective
against replicative as well as non-replicative drug-residthtit and could potentially treat
active TB patients as well as latently infected individuals.

Experimental techniques used in identification of inhibitors Mxtb growth are very
expensive, time-consuming, tedious and requires sophisticated infrastr{BiSL-3) for
mitigation of risk of infection. Thus, there is an urgent need to develspico models for
predicting inhibitors against drug-toleralktb. In past, a number of target based models
have been developed using QSAR and docking [12-16] for identification of miweitors
againstM.tb. However, impermeability of chemical compounds to the mycobacterial all w
hindered them to act as good lead molecules. To the best of our kgeyedattempt has
been made to develop prediction models against phase specific drug-teld¢iant

Despite the enormous progress in computational and medicinal chenustyy,few
webservers namely KiDoQ [17], GDoQ [18] and CDD [19] for predgtihe efficacy of
potential antimycobacterial drug like molecules are freelyilaba to the scientific
community. In order to assist researchers in discovering newicdlesntity (NCE) against
tuberculosis, a systematic algorithm has been developed to prédictnhibitors of
replicative and non-replicative drug tolerahtb H37Rv.

Methods

Data source

Datasets were created from PubChem confirmatory BioAgd®¢492952 (replicating), and
AID-488890 (non-replicating)] screens of drug tolerdhtb H37Rv in carbon starvation
model [20,21]. Although in past, hypoxia induced model have been used for compound
screening but only AID-488890 has been used to study carbon starvation ofodel
persistence. Since, the behaviour of compounds is different under différgsiblogical
conditions, therefore it is extremely important to identify and @epthe structure activity
relationship (SAR) of inhibitors against this pathogen in carbon sikamvatage. The
BioAssay (AID-488890) involved primary screening of more than 3 lakhpoomds that
identified 13,177 active compounds. This screening identified four classekilotors: 1)
inhibitors of viability under carbon-starvation, 2) inhibitors of transitirom carbon-starved

to replicating state, 3) inhibitors of outgrowth, and 4) quenchers offlaéfescence used as
reporter of outgrowth. From these 13177 compounds, a total of 2294 compounds were
selected for confirmatory screening based on class-I andltiakgbitors. In both BioAssay,
compounds that showed >30% inhibition for at least one concentrationdeéned as
“Active”, otherwise defined as “Inactive”. All the compounds used irs¢hassay were
downloaded in SDF format, processed and named Rep_dataset (replicatim
NRep_dataset (non-replicating) as described below in detail [Figure 1].

Figure 1 Showing the flow diagram of datasets.




NRep_dataset

The confirmatory screening in this assay resulted in 1277 activel@ftd inactive
compounds against non-replicatikigtb. After removing the compounds containing salt/ions,
we got a final dataset of 2135 compounds, out of which 1206 were idensfigdhibitors
and 929 were non-inhibitors.

Rep dataset

This dataset involved screening of 2294 compounds from the BioAssay-488890 and
identified 1453 inhibitors and 841 non-inhibitors fdrtb residing in replicating phase. After
removing the salt/ions containing compounds, the final dataset wasosethof total 2135
compounds of which 1355 compounds acted as replication mode inhibitor anenmeston-
inhibitors.

SMART filters

The SMART pattern is the fragments present in compounds with urldesaféect reported
in past and found to be responsible for toxicity or other side-effButsefore, it is important
to search these reactive, non-advisable functional groups in the compuitimadsug-like
potential. In this study, we have used SMART filter web appbaati
(http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter) with Abhb&RM [22], Glaxo
[23] and Pfizer LINT [24] SMART filters. In this software, eaadmpound was evaluated for
potential to pass each particular filter. A molecule matchonis filter is classified into the
failed category. On this basis, it will identify the number of poonds that pass or fail any
of the implemented filters.

Substructure fragment analysis

In order to mine the hidden structural motifs present in cheroarapounds, in this study,
we have used the substructure pattern recognition method as desyribeenst.al [25,26].
The dictionary of SubFP (substructure fingerprints) containing 307 sulosgUUSMART)
pattern, which is freely available in PaDEL software waslu§hese patterns were analyzed
by substructure fragment analysis [27]. The frequency of gmkat in the inhibitors and
non-inhibitors of\M.tb for a particular phase was calculated as follows.

( Nfragment _ phase X Ntotal)
( Nfragment _ total X Ncla§)

Frequency of a fragment =

1)

where Nagment_phasdS the number of compounds containing the fragment M.t phase
inhibitor. Nt is the total number of compounds in that phasggmNnt wtais the total
number of compounds containing the fragment, aggdsé the number of compounds in the
M.tb phase inhibitor.

Pharmacophore search

Since the pharmacophore represents the critical point present incahstructure and take
part in protein interaction, thus we have explored these featurssnpia our datasets. The
pharmacophore features were generated for the three ties{rlfampicin, ethambutol and



streptomycin) and four second line (ethionamide, cycloserine, kananamikacin)M.tb
drugs using pharmagist software [28]. These pharmacophores (nammdagbhore-1,
pharmacophore-2) were then used to search similar compounds amoimibi@rs of
Rep_dataset, and NRep_dataset.

Descriptor calculations

The PaDEL software has the capability of calculating 10 réiffietypes of fingerprints and
813 2D-3D descriptors [29]. The binary fingerprints are easy talesd; informative and
interpretable, therefore we have used these in our datasetddt source section). The bit-
string fingerprint is represented by 0’'s or 1's for the absemcpresence of a particular
fragment. In this study, we have used four different types of fingerprints.

Descriptor selection

It has been previously recognized that amongst the huge number optdesconly a few

are relevant for efficient model building [30]. It is well knowntthiae computation time
increases diagonally with addition of parameters. Furthermore, siwweriptors that
increases the noise level tremendously affect the model qudityefbre, selection of highly
relevant descriptors is a crucial step to reduce the noise #ncklto build a robust
classification model. Therefore, we adopted multilayer technitpye$) removing highly

correlated descriptors (> = 0.8 to > =0.4), 2) MCC based seleofiatescriptors, 3)

frequency based selection. For example, initially calculated 88iCHem fingerprints
calculating using PaDEL software were reduced to 597 aftaoving useless fingerprints,
then to 247 by removing highly correlated descriptors at correlation cutoff 0.6.

Classification models

SVM based classification models

We have used support vector machine (SVM) for discrimination betimbéitors and non-
inhibitors of drug toleranM.tb for both replicative and non-replicating phases. SVM can
handle complex structural features based on the statisticalopinuizations theory. In
optimization process, the most important parameter is kernel furastobis represented by t
that varies from 0, 1, 2 corresponds to linear, polynomial, and radial foasition (RBF).
The purpose of kernel function is to build a hyperplane that could separate twe ofada@
more accurately. For RBF kernel, the other parameter valaeg ar and j where c is used to
trade-off between training error and margin, j is used to as$igncost, important in
imbalance dataset and g is the gamma factor. In this studysee SVM™ software
package, which is freely available and can be downloaded from
http://www.cs.cornell.edu/People/tj/svm_light/. The performance of teodas optimized
using a systematic variation of these different SVM parameters and kernels

Evaluation of performance

To evaluate the performance of the prediction model, we adopted falfiveross validation

approach. In this approach, the whole data was divided into fiveFeetissets were used in
training and remaining 5th set was used for testing. This pra@sseepeated five times such
that each set comes in test set one time. If a particulapaamd was active and the



prediction also envisage the same, then this was classifiedegsasitive (TP); if actual was
active and prediction was inactive, then it was false negatNg (Factual was inactive and
prediction was active, then its false positive (FP); and dadas inactive and prediction is
also inactive, then it’s true negative (TN) [26]. Once the ma@eal constructed fitness of the
model was assessed using the following statistical param@ferbave also created receiver
operating curve (ROC) to evaluate the performance of models useghold independent
parameters. ROC plots with area under the curve were created using R€Xagepa R.

Results

This study is based on high-throughput screening data from PubChenssBioAor
identifying potential inhibitors against drug tolerdmtb H37Rv (replicative phase and non-
replicative phase).

Analysis of inhibitors and non-inhibitors

We calculated the descriptors of both Rep _dataset and NRep_datasetegifhod section)
using the Marvin plugin (ChemAxon, Budapest, Hungary (http://www.chemeam). We
observed that the mean value of molecular weight, Atom count and numbetataile
bonds (RBN) was significantly highep (< 0.05) in inhibitors of replicating phase as
compared to non-inhibitors whereas the lower mean value of theseptiscwas observed
in case of inhibitors of non-replicating phase as compared to non-inkilpitable 1]. We
compared inhibitors of both replicating and non-replicating phase, anervels that
molecular weight, hydrogen bond acceptor, atom count, polar swafaee and rotatable
bond count is significantly lowep(< 0.05) in the compounds inhibiting replication phase of
M.tb. Furthermore, we analyzed these important properties to ideatify correlation
between these descriptors and activity and derived new rulesldotifying inhibitors of
mycobacterial growth [see detail in Additional file 1]. Our Ilgsis suggested that the
percentage of inhibitors against mycobacterial growth (repleabhase) were more as
compared to percentage of non-inhibitors when the molecular weight isD&30this means
probability of being inhibitors in this range is higher as compaoedon-inhibitors (see
Additional file 1: Figure S1). Likewise, the percentage of actiempounds were more in
comparison to percentage of inactive when the hydrogen bond accepfamnl ¥otatable
bond count >6 (see Additional file 1: Figure S3, Additional file 1:.uFegS5). Similarly,
when polar surface area was <88 A, percentage of decoys mae as compared to
percentage of active molecules implies that the compounds with uoface area >88 A
were preferred for inhibitors [see Additional file 1: Figure Sdhwever, for designing
inhibitors against non-replicative mycobacteria, percentagetofe is more as compared to
percentage of inactive when the molecular wt. of compounds is <388eBa\dditional file
1: Figure S6). This means that molecules with molecular wéggist than 380 Da were
preferred in inhibitors as compared to non-inhibitors. Similarly peagenof inhibitors was
less as compared to percentage of non-inhibitors when rotatable borndveasl >4 (see
Additional file 1: Figure S8).



Table 1 Mean (SD) of molecular descriptors from theM.tb datasets, compared actives
and inactives

Descriptor Rep_dataset NRep_dataset Rep_dataset vs. NRep_dataset
Inh? NIP Inh® NIP Inh® Inh®

Molecular weight  325.73 (55.07) 312.37 (57.71) 317.32 (53.4%) 325.44 (59.78) 317.32 (53.42) 325.73 (55.07)
logP 2.96 (0.95)  2.82 (0.99) 2.92(0.93)  2.90 (1.02) 2.92 (0.93) 2.96 (0.95)
HBA" 3.93 (1.35)  3.39(1.29) 3.76 (1.36)  3.70(1.34)  3.76 (1.36) 3.93 (1.35)
HBD™ 0.97 (0.76) 1.00 (0.76) 1.00 (0.76) 0.97 (0.77) 1.00 (0.76) 0.97 (0.76)
Atom count 38.31(8.38) 37.60(8.30) 37.19(7.62) 39.16 (9.17) 37.19(7.62) 38.31(8.38)
PSA 74.81 (27.63) 64.46 (23.32) 72.29 (27.17) 69.38 (25.77) 72.29 (27.17) 74.81 (27.63)
RBN" 458 (2.04) 440(1.95) 4350191  4.73(2.12) 4.35 (1.91) 4.58 (2.04)

4 nh: corr*gspond to inhibitors’Nl: correspond to non-inhibitorsHBA: hydrogen bond
acceptor,  HBD: hydrogen bond donorPSA: polar surface areaRBN: denotes rotatable
bond number’p < 0.05.

Based on these rules, we also tried to understand the behaviour oflassvof anti-
tuberculosis molecules and found that out of 7 replication mode inhibRé824, OPC-
67683, TMC207, SQ109, Thioridazine, Lineziod, PNU-100480), on an average 3 (42.8%)
molecules satisfied these rules. Similarly out of 4 inhibitoré&-824, Thioridazine,
Linezolid, Motifloxin), an average 2 (50%) compounds followed these ruiesrder to
further support these rules, we also analyzed 81 inhibitors (out of l1aundeecest were
complex form) of tuberculosis studied by Balletl al., [31] and observed that 77.77%
compounds fulfill the condition of molecular weight, 56.79% followed logRertait and
27.16% agreed with condition of rotatable bond count. There were only 19.75% acti
compounds which does not satisfy any of these rules while rest 8v2&dollowing one

or more rules [Additional file 2: Table S1].

Validation of dataset

In 2011,Ekins et. al. used different datasets such as Novartis, MLSMR, TAACF-NISE?
in their study [9]. The Novartis dataset is composed of total 283 cordpaut of which 42
were aerobic and 241 were anaerobic inhibitorédb The MLSMR and TAACF-NIAID
CB2 dataset consist of 4096 and 1702 compounds responsible for inhilbittnghore than
90% at 10um concentration. We were interested to know the similarity ofdataset with
Ekins et.al datasets [9]. Therefore, we computed simple molecular propartesompared
in terms of the mean value and standard deviation (SD) of the desdfpdure 2]. The
mean value of molecular weight, logP, hydrogen bond acceptor,dgmditmond donor, and
atom count is more closely related to Novartis aerobic datéggtré 2A-2E]. However, the
polar surface area, and rotatable bond count was near to Novartiskanaed MLSMR
dataset [Figure 2F-2G]. This means that our datasets haver noifgerties and are not very
different from previous datasets.

Figure 2 Mean molecular descriptor property values depicted in thform of column
and standard deviation (SD) in the form of error bar for Rep Rep_dataset), and NRep
(NRep_dataset) inhibitors compared with Nov (Novartis), Nov_Aer Novartis
Anaerobic), Nov_Ana (Novartis Anaerobic), MLSMR and TAACF-NIAID CB2 dataset
hits.




SMART filtering of the datasets

Previously, six different database namely US Antibiotic drugsmfiMicrosource database
consist of 163 compounds, US FDA drugs from Microsource contains 1041 dids, F
drugs from Jons Hopkins comprises of 2693 drugs, Natural Product from Microsource consist
of 800 compounds, Novartis dataset consist of 283 compounds, and 13 TB dregsecer
for SMART based filtering [8,9,19]. We also examined our datasetsh& presence or
absence of different types of filters, which were used in tHatssets. It was observed that
78.6%, 16.3% and 44.1% compounds failed the Abbott ALARM, GSK, and Pfizer LINT
filter respectively [Table 2]. The SMART filtering of ourathset is consistent with other
datasets such as TB drugs, Novartis US antimicrobial drugs etae[Z]. As observed from
the Table 2, the Abbott ALARM filter has high rate of failurecampared to GSK and Pfizer
LINT filters in all the different datasets.

Table 2SMART filtering number of failures (%) using SMART filter websit e

Filters Rep_datasetNRep_datas Novartis ~ TB drugs  US USFDA" JHFDA"  Natural

et (283) (13) Antibiotic ” Product™
GSK (%) 197 (14.5) 196 (16.3) 20 (7.1) 1(7.7) 57(35) 143 (13.7) 401 (14.9) 125 (15.6)
Pfizer LINT (%) 609 (44.9) 532 (44.1) 135(47.7) 6(46.1) 93(57.0) 516 (49.6) 1264 (46.9) 304 (38.0)
Abbott ALARM (%) 1064 (78.5) 948 (78.6) 243 (85.9)  7(53.8) 144 (88.3) 688 (66.1) 1442 (53.5) 521 (65.1)

"US Antibiotic drugs from Microsource,Microsource US FDA drugsJons Hopkins —All
FDA drugs,”Natural Product from Microsource.

Substructure fragment analysis

To further explore the structural features responsible for kiltimg M.tb, substructure
fragment analysis [25-27] was performed on both (Rep_datasetReyh Mataset) datasets
using Substructure fingerprint (SubFP). The representative fragnodatracterizing the
inhibitors and non-inhibitors are shown in Table 3. As shown in Table 8rpatthetero_O,
ketone, secondary _mixed_amine, vinylogous halide, and vinylogous carbonyl or
carboxyl_derivatives present in higher frequency in NRep_dataset arkibg compared to
non-inhibitors, whereas no significant difference is present inafaRep_dataset. Similarly,
pattern of hetero_N_nonbasic, heterocyclic, carboxylic_ester, hbtdoasic no H occur
more frequently in NRep_dataset inhibitors while these substracineemore or less similar

in case of Rep_dataset.



Table 3Frequency of 20 representative substructure fragments in the Repathset and
NRep_ dataset

Fragment number Fragment/substructure name Rep_dataset NRep_dataset
l:I# l:nonlw I:I# l:nonlw
SubFP181 Hetero_N_nonbasic 1.15 0.74 1.03 0.96
SubFP275 Heterocyclic 1.03 0.94 1.00 1.00
SubFP85 Carboxylic_ester 1.14 0.76 0.97 1.03
SubFP180 Hetero_N_basic_no H 1.18 0.68 0.95 1.07
SubFP182 Hetero_O 1.04 0.92 1.10 0.87
SubFP49 Ketone 0.97 1.06 1.13 0.83
SubFP32 Secondary_mixed_amine 1.00 1.01 1.28 0.64
SubFP135 Vinylogous_carbonyl or carboxyl_derivative 1.02 0.97 1.09 0.88
SubFP139 Vinylogous_halide 1.00 1.00 1.16 0.79
SubFP214 Sulfonic_derivative 095 1.09 0.68 1.41
SubFP143 Carbonic_acid_derivatives 0.95 1.08 0.80 1.27
SubFP65 NOS_methylen_ester_and_similar 0.41 2.03 1.38 0.51
SubFP23 Amine 0.92 1.14 0.70 1.39
SubFP3 Tertiary_carbon 0.80 1.35 0.90 1.13
SubFP20 Alkylarylthioether 0.69 1.55 0.79 1.27
SubFP103 Alkyl_imide 0.30 2.22 0.43 1.74
SubFP2 Secondary_carbon 0.88 1.21 0.93 1.09
SubFP188 Nitro 1.23 0.60 1.14 0.82
SubFP6 Alkyne 1.08 0.86 1.66 0.14
SubFP76 Enamine 1.13 0.78 1.39 0.49

F: Frequency of a fragment in inhibitdfF.on: Frequency of fragment in non-inhibitor,
bold values shows the significance of substructure in the dataset.

As shown in Table 3, the substructure patterns like nitro, alkyne, rean@re presented
more frequently in case of inhibitors of both the Rep_dataset and N&epet as compared
to non-inhibitors. However, the patterns like amine, tertiary_carbonlagjkpioether and
secondary_carbon are not preferred in any class of the inhibitors.

Pharmacophore searching

We have generated two pharmacophores using three first line andefmmdslineM.tb

drugs, (see method section) and then scanned these pharmacophoresiatases. As
shown in Figure 3, the screening of NRep_dataset inhibitors regulietl 735 (60.9%) and

579 (48%) compounds for pharmacophore-1 and pharmacophore-2 respectively Brigure
Additional file 3: Table S2]. Similarly, screening of Rep_datdsetactive compounds
resulted in total 846 (62.4%), and 704 (58.3%) compounds for pharmacophore-1 and
pharmacophore-2 respectively [Additional file 4: Table S3].

Figure 3 Showing the results of pharmacophore based screening of both the datasets

Classification models

The PaDEL software used in this study calculates 881 PubChem, 168CBIA79 EState,
307 SubStructure fingerprints and each corresponds to a specificustiostrfragment. In
this study, we have developed computational models on both the datasefsthese
fingerprints as described below.



Model based on NRep_dataset

Model based on binary fingerprints

The first SVM based model that was developed using 881 PubChem finteigirowed
65.09%, 62.33%, 63.89% sensitivity, specificity and accuracy with MCC \aflug27
[Table 4]. Likewise, based on MACCS keys, we achieved best M&@\0.15 using 43
fingerprints. As shown in Table 4, the performance of models oleeel using other
fingerprints like MACCS, EState, and SubFP was poor with MCC vdess than 0.2.
Afterwards, we removed all fingerprints which have correlatios0.8 to > =0.3 for all four
classes and observed that the prediction accuracy is moresosifeilar up to correlation
cutoff value 0.6 [Table 4, Additional file 5: Table S4]. In case of Fdng our model
showed 62.60%, 63.40%, 62.95% sensitivity, specificity and accuracy resjectuie
MCC value 0.26 at correlation cutoff 0.5. Similarly as shown in Additifiteb: Table S4,
MACCS based 34 keys shows an accuracy value 55.93% with MCC value OcHaelof
Estate based fingerprints, numbers of descriptors remained fsame0.6 to 0.4 cutoff,
therefore no change in performance has been observed. In oragaréve the performance,
we developed a hybrid model using all reduced fingerprints atralation cutoff value >
=0.6 obtained from each class and achieved MCC value 0.28 slightey bedn model
developed on individual class. However, using criteria of > =0.5, an@l4; the prediction
accuracy decrease ~1% to 2% [Additional file 5: Table S4].

Table 4Results of different binary fingerprints for NRep_dataset calculatedrom
PaDEL software

Fingerprint Descriptor Sensitivity Specificity Accuracy MCC AUC
numbers
PubChem 881 65.09 62.33 63.89 0.27 0.67
PubChem (0.6) 247 62.44 63.51 62.90 0.26 0.68
MACCS 166 56.63 59.20 57.75 0.16 0.60
MACCS (0.6) 36 53.07 58.99 55.64 0.12 0.57
EState 79 61.77 55.01 58.83 0.17 0.60
EState (0.6) 33 62.69 55.11 59.39 0.18 0.61
SubFP 307 59.12 60.60 59.77 0.20 0.63
SubFP (0.6) 96 57.63 61.79 59.44 0.19 0.63
Hybrid (0.6) 412 65.67 62.00 64.07 0.28 0.69

Model based on features selected using MCC and frequency based algorithms

A numbers of techniques are available for descriptors selectidnasucorrelation based,
genetic algorithm based, random forest based etc. In this stedizave used two feature
selection techniqgues namely MCCA and frequency based for isgldaghly informative
fingerprints. In case of MCCA, the MCC value of each fingerprias walculated and then
used in arranging the fingerprints in term of increasing vafudCC, from this top 10, 15,
and 20 fingerprints were selected. In case of frequency basedhatgdirequency of each
fingerprint present in inhibitors and non-inhibitors was calculated &&ided in equation-1.
Afterwards, top 10, 15, 20 features were selected on the basis ofrcggdiéference in
inhibitors vs. non-inhibitors (for each fingerprints) [Additional fileTgible S5]. From these
selected features, we observed that there is not much improvemér@ performance of
models with different number of features [data not shown]. The maxiMGC achieved on
MCCA based method on top 15 is 0.18 while on top 15 frequency based method is 0.10
[Table 5]. Furthermore, development of hybrid model using selectedigtessrfrom both
methods resulted in slight increase in performance for eaclofyfpeerprints. As shown in



Table 5, a hybrid model developed using selected fingerprints lyMiased method on all
four classes shows accuracy 60.84% with MCC value 0.22 and AUC value 0.65.

Table 5Results of different binary fingerprints for NRep_dataset on selecté15

descriptors calculated from PaDEL software
Fingerprint MCC-based descriptors Frequency based descriptors Hybrid (MCC + Frequency)

Sen® Spec® Acc/ MCC' AUC" Sen® Spec® Acc? MCC' AUC" Sen® Spec® Acc/ MCC' AUC"
PubChem 59.37 58.45 58.97 0.18 0.67 60.03 41.01 51.76 0.01 0.51 59.62 58.45 59.11 0.18 0.62

MACCS 59.95 50.91 56.02 0.11 0.56 56.80 52.85 55.08 0.10 0.57 61.86 53.39 58.17 0.15 0.59
EState 56.97 55.76 56.44 0.13 0.59 55.80 54.47 55.22 0.10 0.58 59.54 53.07 56.72 0.13 0.59
SubFP 51.99 59.96 55.46 0.12 0.59 59.54 4155 51.71 0.01 0.51 5299 57.37 54.89 0.10 0.57
Hybrid-4 59.45 62.65 60.84 0.22 0.65 61.28 57.05 59.44 0.18 0.60 N.A NA NA N.A N.A

%en.:  Sensitivity, °Spec.:Specificity, "Acc.:Accuracy, 'MCC: Matthews correlation
coefficient," AUC: Area Under Curve.

Model based on Rep_dataset
Model based on binary fingerprints

In this case, the 166 MACCSFP performed best with sensitpégicity 72.47%/73.97%,
accuracy 73.02% with MCC value of 0.45 [Table 6]. The prediction accuwiaPubChem
based fingerprint was nearly equal to MACCFP with MCC value of OHdujfe 4].
However, the EState and SubFP was found to perform poor with MG@€svaf 0.34 and
0.35 respectively [Table 6, Figure 4]. As shown in Additional filedbl& S4, using MACCS
fingerprints at 0.6 cutoff, our model showed an accuracy value 73.02% avbicrease had
been observed at correlation cutoff value 0.5. However, in case oéEstat SupFP, the
numbers of descriptors were more or less constant, therefore nficaignincrement or
decrement in performance was observed. From these resultenaladed that reduction of
fingerprints at correlation cutoff value 0.6 is sufficient fotribtite selection [Table 6,
Additional file 5: Table S4]. As shown in Table 6, the hybrid mdd&s increased the
sensitivity ~3% to 4% but the prediction accuracy was neamyesas that of MACCS
fingerprints based classification model.

Table 6 Results of different binary fingerprints for Rep_dataset calculatedfom PaDEL
software

Fingerprint Descriptor Sensitivity Specificity Accuracy MCC AUC
numbers
PubChem 881 75.79 68.97 73.30 0.44 0.78
PubChem (0.6) 247 73.06 72.18 72.74 0.44 0.80
MACCS 166 72.47 73.97 73.02 0.45 0.80
MACCS (0.6) 91 73.36 72.44 73.02 0.44 0.79
EState 79 70.92 63.59 68.24 0.34 0.72
EState (0.6) 33 70.77 64.10 68.34 0.34 0.72
SubFP 307 70.63 65.64 68.81 0.35 0.73
SubFP (0.6) 96 66.49 68.33 67.17 0.34 0.72
Hybrid-4 (0.6) 467 75.72 68.87 73.58 0.45 0.78

Figure 4 ROC plots of four class of fingerprints.

Model based on features selected using MCC and frequency based algorithms

The above described technique was also applied for selection of tmscrifis shown in
Table 7, the classification model on MCC based selected fingergihtas sensitivity



ranges 53% to 67%, specificity 56% to 64% and MCC value 0.16 to 0.2&ybhd model
of MCC dependent fingerprints encapsulated the features of altifmsses show significant
improvement in MCC value from 0.28 to 0.35 [Table 7]. However, the fregtizsmed
model performed poor in this dataset as well [Additional fileabl& S6]. In frequency based
selected fingerprints, estate fingerprints shows sensitivig4dat3%, specificity of 58.59%,
accuracy of 62.11% with AUC value of 0.64. The four-hybrid model (for eda$s)c
developed using selected fingerprints from both the MCC and frequesegl beethods also
resulted in slight improvement in performance.

Table 7 Results of different binary fingerprints for Rep_dataset on selected5
descriptors calculated from PaDEL software

Fingerprint MCC-based descriptors Frequency based descriptors Hybrid (MCC + Frequency)
Sen® Spec® Acc/ MCC' AUC" Sen® Spec® Acc? MCC' AUC" Sen® Spec® Acc/ MCC' AuC"
PubChem 59.85 56.92 58.78 0.16 0.61 60.00 41.15 53.11 0.01 0.51 58.60 57.44 58.17 0.15 0.61

MACCS 53.95 58.85 55.74 0.12 0.58 54.39 53.72 54.15 0.08 0.54 64.35 61.15 63.19 0.25 0.66
EState 67.31 59.74 64.54 0.26 0.66 64.13 58.59 62.11 0.22 0.64 66.86 58.85 63.93 0.25 0.65
SubFP 64.43 64.10 64.31 0.28 0.65 59.70 44.62 54.19 0.04 0.53 66.20 63.33 65.15 0.29 0.66
Hybrid-4 72.55 62.82 68.99 0.35 0.73 66.13 59.10 63.56 0.25 0.67 NA NA NA N.A N.A

%en.:  Sensitivity, °Spec.:Specificity, "Acc.:Accuracy, 'MCC: Matthews correlation
coefficient," AUC: Area Under Curve.

Discussion

In contrast to the general antibacterial rules or models, thare report for phase specific
rules and very limited efforts have been made to derive suclsfoletuberculosis [32-35].
Therefore, in the present study, we tried to generate new ppas#icsrules for better
inhibitor predictions and drug development agaMdb. Our analysis suggested that simple
molecular properties of chemical compounds like molecular weigh®, Ipolar surface area
etc. were playing an important role in crossing the mycobaotecell wall and its killing.
Based on this study, we propose that some properties like molegeigzht of compounds
>300 Da for replication inhibitors and <380 Da for compounds inhibiting tulmsisugrowth
in non-replication mode. Based on this study, we derived some ruleefaifying inhibitors
againstM.tb (for details see result section). We have also shown that sobstructure
patterns like nitro, alkyne, enamine were dominating in inhibitorsclas both phases.
Similarly, the substructure like amine, tertiary carbon, alkitlaioether, secondary_carbon
were not preferred in any of the growth phase inhibitors. Thisy stigtnonstrated that
molecules targeting the replicative and non-replicative phasesdiff@ent chemical and
molecular properties. These variations could arise from difeem the cellular metabolism
and composition of cell wall oM.tb in these two phases of pathogenic cycles. We also
observed that out of 7 drugs on an average 3 satisfied these d¢ataealication inhibitors
and out of 4 drugs known to be active in latent phase, ~2 also satisfslrules implying
the applicability of these modified rules for identifying antdérculosis molecules. However
this observation also suggests that there is an urgent requirtamientease the dataset of
antitubercular drugs to further improve these rules. As suggestenbusly, identification of
the undesirable fragment is important in early stages of dragwdisy to reduce the time and
cost involved in optimization process [36]. Our SMART filtering resatts similar to that of
previous studies. The substructure patterns, identified in this wdrlbevihelpful for TB
research community to design most potent inhibitory molecules adaibst

Additionally, four types of binary fingerprints were used to developgsdiaation models
using SVM based machine learning approach. We observed that theareddaescriptors



even at > =0.6 correlation cutoff, is sufficient to develop a robussi@lzation model. As
reported in different studies, we also observed that descriptordicelevas playing an
important role in efficient model building [17,18]. In the present wasd have introduced a
new algorithm named MCCA (Matthews Correlation Coefficientohittpm) for selection of
informative descriptors/fingerprints.

In past, different studies have been done to praditb inhibitors. The Bayesian based
classification model developed by Ekigisal. has good predictive power value >0.7 (in-term
of AUC) on independent dataset [9]. In 2011, another Bayesian bask wes developed

to differentiate inhibitors under aerobic vs anaerobic condition [&].tBe major limitation

of previous studies was that these were not able to predict theatepl/non-replication
phase specific inhibitors dfl.tb based on carbon starvation model. In 2010, A report by
Gengenbacheet. al showed that the behaviour of drugs like steptomycin, rifampicin,
isoniazid etc. was entirely different in replication, hypoxia irdudrug tolerant and nutrient
depleted models [37]. Secondly, these models were based on the use roércan
softwares, hence limiting their accessibility. Similariky,2011, Periwalet. al. developed
model on three dataset with maximum MCC value of 0.52. In 2012, a cdiapatanodel
was developed using large datasets obtained from high throughgemiscy based on whole
cell screening using microdilution alamar blue assay and achmagmhum AUC value of
0.748 [38]. Although, Periwadt. al. used the free softwares for model development but the
non-availability of free software/webserver of these studlyiceshe use of their model by
the scientific community. Considering these observations, we have deaVvelape
computational model that could discriminate the active compounds from inactive onds in bot
phases. Based on this study, we have also developed a user frieadly, dvailable
webserver to search for new active molecules. We anticipateéhese findings will provide
insight that could be used in future to identify novel inhibitors effeagainsi.tb in either
replicative or non-replicative phase.

In summary, we have identified some important substructuresatieapresent invi.tb
inhibitors. The SMART based filtering had identified 164 compounds freplicative
inhibitors dataset and 180 compounds from non-replicative inhibitors d#tasgiassed all
these three filters (see result section) would be useful inefitureduce the effect of poor
ADMET properties. These compounds would be useful in future for vidtralening and
designing new inhibitors againkt.tb. This study is implemented in the form of open source
webserver to assist scientific researcher, and to boost up thelidoogery process against
M.tb.

Web service to community

One of the main reasons of slow progress in Computer Aided Drugriregs (CADD) is the
lack of freely available softwares and its implementation im-fisandly webservers. Most of
these studies were focused on commercial softwares and hesxicantplementation is
difficult. Our major emphasis is to help scientific communitydeyeloping freely accessible
webserver/softwares based on our study. Thus, we have used both canasewell as
open source softwares in this study. Based on that, we have develomdaserver using
SVM based classification model. Additionally, we have implemented pi@magist
software for identifying pharmacophore features similar tditeeline and second line anti-
mycobacterial drugs. Server has been developed under Linux envirooswegtCGl-Perl
scripts. In this web server, there are three options for moleablaission, 1) Draw structure
using JME editor (http://www.molinspiration.com/jme/), 2) By pastimgjecule in mol/mol2



file format, 3) By file upload. The results of prediction is providedthie tabular format with
prediction class (inhibitor or non-inhibitor) of both phase as well asnpéicophore features
similar to first line as well as second liNktb drugs present or absent.

Abbreviations

QSAR, Quantitative structural activity relationship; SMARTS, i8M ARbitrary target
specification; MLSMR, Molecular libraries small molecule refmyyg; AUC, Area under
curve; SVM, Support vector machine
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