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Mitochondria are considered as one of the core organelles of
eukaryotic cells hence prediction of mitochondrial proteins is one
of the major challenges in the field of genome annotation. This
study describes a method, MitPred, developed for predicting mito-
chondrial proteins with high accuracy. The data set used in this
study was obtained from Guda, C., Fahy, E. & Subramaniam, S.
(2004) Bioinformatics 20, 1785–1794. First support vector
machine-basedmodules/methodswere developed using amino acid
and dipeptide composition of proteins and achieved accuracy of
78.37 and 79.38%, respectively. The accuracy of prediction further
improved to 83.74% when split amino acid composition (25 N-ter-
minal, 25 C-terminal, and remaining residues) of proteins was used.
Then BLAST search and support vector machine-based method
were combined to get 88.22% accuracy. Finally we developed a
hybrid approach that combined hidden Markov model profiles of
domains (exclusively found inmitochondrial proteins) and the sup-
port vector machine-based method. We were able to predict mito-
chondrial protein with 100% specificity at a 56.36% sensitivity rate
and with 80.50% specificity at 98.95% sensitivity. The method esti-
mated 9.01, 6.35, 4.84, 3.95, and 4.25% of proteins asmitochondrial
in Saccharomyces cerevisiae,Drosophila melanogaster,Caenorhab-
ditis elegans, mouse, and human proteomes, respectively. MitPred
was developed on the above hybrid approach.

The mitochondrion, popularly known as the power house of the cell,
is the central unit of eukaryotic cells.2 It is a doublemembrane-bounded
organelle with two spaces, the outer intermembrane space and inner
matrix. Due to the presence of an explicitmitochondrial genome, unlike
other organelles, its function is regulated by two genomes. It performs a
plethora of biochemical reactions like oxidative phosphorylation, Krebs
cycle, �-oxidation of fatty acids, DNA replication, transcription, trans-
lation, etc., some ofwhich occur inmitochondria only. In additionmito-
chondria are also involved in apoptosis (1) and ionic homeostasis (2).
Because of their multidimensional utility, mitochondrial proteins are
associated with several human diseases, including Alzheimer disease
(3), Type II diabetes (4) and Parkinson disease (5).
A majority of mitochondrial proteins are synthesized in cytoplasm

fromwhere they are transported insidemitochondria. But a small num-

ber of mitochondria-resident proteins are also synthesized inside mito-
chondria by the mitochondrial genome. Proteins that are imported to
mitochondria contain a leader sequence at theN terminus that contains
all the information needed to localize tomitochondria (6). But this is not
true for all mitochondrial proteins. Inmany cases the leader sequence is
altogether absent. This poses amajor challenge in predictingmitochon-
drial proteins in silico.
In the past, a number of methods have been developed to predict the

mitochondrial proteins, although most were not intended exclusively
for mitochondrial proteins. Existing prediction methods can be divided
into four categories. The similarity search-based techniques fall under
the first category inwhich the query sequence is searched against exper-
imentally annotated proteins. If the query protein has significant
sequence similarity with any mitochondrial protein then it is predicted
as a mitochondrial protein. But this method fails to predict new/novel
proteins if these proteins do not have similarity with known proteins.
Although the similarity-based method is very informative and consid-
ered to be best, it becomes severely handicapped when no apparent
homology is found (7). In the second category, themethods are based on
predicting signal sequences in proteins. A number ofmethods fall under
the second category where sorting signals, present on the protein itself,
are used for prediction. This category includes TargetP (8), SignalP (9),
and PSORT II (10). Although these methods are quite popular, their
major limitation is that not all proteins have signals; for example, only
around 25% of yeast mitochondrial proteins have “matrix-targeting sig-
nals” particularly at the N terminus (11). Because of this, these methods
fail to predict the proteins that do not have a signal. In the third category,
methods attempt to predict subcellular localization on the basis of
sequence composition. Some popularmethods in this category are ESL-
pred (12), HSLpred (13), NNPSL (7), and LOCSVMPSI (14). Although
their overall performance is very good, accuracy of prediction of mito-
chondrial proteins is much lower than for proteins in other locations. It
shows that mitochondrial protein localization is much more complex
than seen otherwise. Hence prediction of mitochondrial proteins war-
rants special attention. Recently Guda et al. (15) developed a method,
MITOPRED, which falls under the fourth category of prediction meth-
ods. This method is exclusively developed for predicting mitochondrial
proteins with a maximum accuracy of 92.3% (Mathews’ correlation
coefficient (MCC),3 0.638). Its output is the combined score of two
scoring methods that assign an arbitrary score on the basis of existence
of Pfam domains, differences in the amino acid composition, and the pI
value of the protein.
In the present study we tried to improve the prediction accuracy of

mitochondrial proteins. First we carried out systematic analysis of
amino acid composition of both mitochondrial and non-mitochondrial
proteins, and then on the basis of the conclusion drawn we developed
the prediction method. In our study we used a powerful machine learn-
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ing technique, support vector machine (SVM), for classifying proteins
instead of the pI score used in MITOPRED.

MATERIALS AND METHODS

Data Sets and Evaluation—We used the same data set that was con-
structed to develop MITOPRED by Guda et. al (15). This data set con-
tain 1432 mitochondrial and 8940 non-mitochondrial sequences. First
both mitochondrial and non-mitochondrial proteins were randomly
divided into five parts. Each of these five sets consists of one-fifth of
mitochondrial (� 287) and one-fifth of non-mitochondrial (� 1788)
proteins. For training and for testing and evaluating our methods, we
used a 5-fold cross-validation technique inwhich four sets were used for
training and the remaining set was used for testing. This process was
repeated five times so that each set was used once for testing (16).

Amino Acid and Dipeptide Composition—The aim of calculating the
composition of proteins is to transform the variable length of protein
sequences to fixed length feature vectors. This is an important andmost
crucial step during classification of proteins using machine learning
techniques because they require fixed length patterns. In addition the
conversion of a protein sequence to a vector of 20 dimensions using
amino acid composition will encapsulate the properties of the protein
into the vector. In addition to amino acid composition, dipeptide com-
position was also used for classification that gave a fixed pattern length
of 400. The advantage of dipeptide composition over amino acid com-
position is that it encapsulates information about the fraction of amino
acids as well as their local order. The amino acid as well as dipeptide
composition was calculated as described by Garg et al. (13). Both com-
positions were used as input to classify mitochondrial and non-mito-
chondrial proteins using SVM.

Split Amino Acid Composition (SAAC)—In the case of SAAC, vari-
able length protein sequenceswere represented by a fixed length pattern
of 60 instead of 20 in the case of standard amino acid composition. In
SAAC each protein is divided into three parts: (i) 25 amino acids of the
N terminus, (ii) 25 amino acids of the C terminus, and (iii) the region
between these two. The rationale behind using this is the fact that per-
cent composition of the whole sequence does not give proper weight to
compositional bias, which is known to be present inmitochondrial pro-
tein termini. Hence the advantage of SSAC over standard amino acid
composition is that it provides greater weight to proteins that have a
signal at either the N or C terminus.

N-terminal Signal—It is a well reported fact that mitochondrial pro-
teins contain signal sequence at their N termini, and this is used in
TargetP for prediction (8). In this work we adopted a different strategy
tomodel N-terminal signal. It was represented by a binary vector of 525
(25 � 21) representing the N-terminal 25 residues. This binary vector
was used to classify the proteins using SVM.

Combination of SVM-based Method and BLAST Search—BLAST
(17) is the most commonly used tool for similarity search. In this study
we computed the performance of BLAST in detecting mitochondrial
proteins using default parameters at an e value of 0.1. In this, proteins of
the test sets were used as the query against a data base containing the
proteins of corresponding training sets. The performance of BLASTwas
calculated in terms of correct hits for mitochondrial proteins. In the
next step the search result was combined with the SVM-based method.
Although BLAST remains the final referee, SVM predictions were used
only for proteins where either BLAST did not find any significant hit or
themost significant hit was a non-mitochondrial protein and vice versa.
We also repeated the same procedure at different cutoff e values. If a
protein has a hit with e value less than the cutoff then the BLAST pre-
diction was used; otherwise the SVM-based prediction was considered.

Occurrence of PfamDomains Using HiddenMarkovModels (HMMs)—
HMMs are a class of probabilistic models that are generally applicable to
time series or linear sequences. It describes probability distribution over a
potentially infinitenumberof sequences.Basically it is amoreadvancedand
sophisticated version of theMarkov chain. In this study, HMMwas imple-
mented using HMMER (hmmer.wustl.edu/). The HMM-based sequence
searchwas doneusing thePfamdata base (release 17.0) (18),which is a data
base of multiple sequence alignment of proteins belonging to the same
family. It contains 7868 families, each representing a Pfam domain. Each
mitochondrial andnon-mitochondrial protein in our data setwas searched
against thePfamdata base using theHMMsearch at an e value threshold of
1e�5. Search results were analyzed to detect three type of domains: (i)
exclusively mitochondrial domains occurring only in mitochondrial pro-
teins, (ii) exclusively non-mitochondrial domains occurring only in non-
mitochondrial proteins, and (iii) shared domains occurring in both type of
proteins. A protein was assigned as a mitochondrial protein if it contains
even one exclusive mitochondrial domain.

Hybrid Approach—In the hybrid approach SVM and the HMM
search were combined to exploit the benefits of both de novo prediction
by SVM and the highly sophisticated HMM-based similarity search
technique in a well annotated and curated domain data base, Pfam.
Because domains are structural, functional, and evolutional units of
proteins, it is well known that all proteins aremade up of either single or
multiple domains. Hence searching domain(s) can be a major step
toward determining the localization of a protein that may give a new
insight on probable function of a protein. But because all the domains
are not characterized yet, instances where not even a single hit is found
can be a real challenge. In these cases incorporation of SVM-based
prediction can be a good alternative. In this way the hybrid approach
should be a better way of prediction. First proteins in the test set were
searched against a data base of exclusive mitochondrial and non-mito-
chondrial domains. A protein was assigned as amitochondrial protein if
it has an exclusive mitochondrial domain and was assigned as a non-
mitochondrial protein if it has an exclusive non-mitochondrial domain.
But if the protein does not have any exclusive domain then the SVM-
based method was used for prediction.

Evaluation on Independent Data Set—Cross-validation is the most
popular method to evaluate performance of a prediction method. But it
has been shown in the past that performance of n-fold cross-validation
is not completely unbiased (19). To assess the unbiased performance of
any method one needs to evaluate it on an independent data set. Keep-
ing this in mind we evaluated the performance of our method on an
independent data set generated from “OrganelleDB,” which is a curated
data base of mitochondrial proteins (20). It contains 723, 412, 352, 320,
and 99 mitochondrial proteins of yeast, Drosophila, Caenorhabditis
elegans, human, and mouse, respectively.

Annotation of Proteomes—Five complete eukaryotic proteomes were
downloaded from the European Bioinformatics Institute (www.ebi-
.ac.uk/integr8) representing three non-vertebrates (S. cerevisiae, C.
elegans, andDrosophila melanogaster) and two vertebrates (human and
mouse). On these proteomes, by using the hybrid approach of the Pfam
search and SVM, an estimation of the total number of mitochondrial
proteins was carried out.

Support Vector Machine—In this study we implemented SVM by
using the SVMlight package (21), which allows us to choose a number of
parameters and kernels (e.g. linear, polynomial, radial basis function,
and sigmoid) or any user-defined kernel. Assuming that we have a num-
ber of patterns Xi � Rd (i � 1, 2, . . . . n) with corresponding target values
yi �{target value}. Here the target value is either �1 (representing a
mitochondrial protein) or �1 (for non-mitochondrial proteins). SVM
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maps the input vectors xi into higher dimensional space with minimum
error on the training set. The decision function implemented by SVM
can be written as Equation 1.

F� x� � sign� �
i � 1

N

yi�i K�xi xj � b�� (Eq. 1)

The value of �i is given by the task of quadratic programming, thus
maximizing the subject to 0� �i �C.C is the regulatory parameter that
controls the trade-off between the margin and the training error, and b
is the threshold for defining the hyperplane. The selection of kernel is
very important in SVM, analogous to choosing architecture in artificial
neural network. In this study, learning was carried out using three ker-
nels: linear, polynomial, and sigmoid.

Evaluation Parameters—To assess the performance of methods we
used several parameters routinely used in these types of studies (22 and
13). The following is a brief description of these parameters. (i) The
sensitivity or percent coverage ofmitochondrial proteins is the percent-
age ofmitochondrial proteins correctly predicted asmitochondrial pro-
teins. (ii) The specificity or percent coverage of non-mitochondrial pro-
teins is the percentage of non-mitochondrial proteins correctly
predicted as non-mitochondrial proteins. (iii) The accuracy is the per-
centage of correctly predicted proteins. These parameters can be calcu-
lated using Equations 2–4,

Sensitivity �
TP

TP � FN
� 100 (Eq. 2)

Specificity �
TN

TN � FP
� 100 (Eq. 3)

Accuracy �
TP � TN

TP � TN � FP � FN
� 100 (Eq. 4)

where TP and TN are truly or correctly predicted positive (mitochon-
drial) and negative (non-mitochondrial) proteins, respectively (Fig. 1).
FP and FN are falsely or wrongly predicted mitochondrial and non-
mitochondrial proteins, respectively.
MCC is considered to be the most robust parameter of any class

prediction method. An MCC equal to 1 is regarded as a perfect predic-
tion, whereas 0 is for a completely random prediction.

MCC �
�TP � TN� � �FP � FN�

��TP � FP��TP � FN��TN � FP��TN � FN�

(Eq. 5)

All themeasures described above have a common drawback that they
give the performance at a given threshold. A known threshold-indepen-
dent parameter is receiver operating characteristic, which is a plot
between true positive proportion (TP/TP � FN) and false positive pro-
portion (FP/FP � TN). The area under the curve gave a single value to
evaluate the performance of a method.

RESULTS AND DISCUSSION

Sequence Similarity Search—One of the common practices for pre-
dicting the function of a new protein is to perform a similarity search
against a data base of well annotated proteins. In this study we used
BLAST for predictingmitochondrial proteins using 5-fold cross-valida-
tion where four sets of mitochondrial and non-mitochondrial proteins
were used to create a BLAST data base, and mitochondrial proteins of
the corresponding test set were searched against this BLAST data base.
This process was repeated five times so the BLAST search was per-
formed once for each mitochondrial protein. As shown in Table 1, the
performance of BLAST at default threshold varies from 38.67 to 82.16%
with an average of 62.15%. This demonstrates that BLAST alone cannot
predict all mitochondrial proteins.

SVM Modules of Amino Acid and Dipeptide Composition—It has
been shown in the past that amino acid composition can be use to
classify proteins. We analyzed amino acid composition of mitochon-
drial and non-mitochondrial proteins (Fig. 2). It was observed that
amino acid composition ofmitochondrial proteins was significantly dif-
ferent from that of non-mitochondrial proteins. Thus it is possible to
discriminate mitochondrial proteins from other proteins. Thus an
SVM-based classifier was developed using amino acid composition as
input vector of dimension 20. Different kernels and parameters of SVM
were tried and achieved accuracy of 78.37% with an MCC of 0.43 using
radial basis function kernel where sensitivity and specificity is nearly the
same (Table 2). It has also been observed in the past that dipeptide
composition-basedmethods are more successful than amino acid com-
position-based methods in classification of proteins (23). Thus, an
SVM-based module was developed to predict mitochondrial proteins
using dipeptide composition as input vector of dimension 400. But con-
trary to our expectation, the performance of the dipeptide composition-
based method was only marginally better than the amino acid compo-
sition-based method (Table 2). Although the receiver operating
characteristic plot was also found to be far above the base line of random
prediction (Fig. 3), still there are chances of improvement. We also

FIGURE 1. Criteria of classification of a prediction into true positive (TP), true nega-
tive (TN), false positive (FP), or false negative (FN). If a positive example is predicted as
positive then it is classified under true positive prediction and vice versa for true negative
prediction. But if a positive example is predicted as a member of a negative class and vice
versa then it is classified as a false negative and false positive prediction, respectively.

TABLE 1
Result of BLAST search on data set used for MitPred
Percent coverage indicates the proteins that were predicted as mitochondrial pro-
teins from the BLAST search. Correct hit shows proteinswhose topmost hit belongs
to the mitochondrial protein class. No hit is the number of proteins that did not get
any hit below the threshold e value.

Data set
Number of
mitochon-

drial proteins

Summary of BLAST hits
Percent
coverageNo

hit
Total
hits

Correct
hit

%
Test1 286 31 255 235 82.16
Test2 287 105 182 111 38.67
Test3 287 66 221 174 60.62
Test4 286 42 244 206 72.03
Test5 286 86 200 164 57.34
Total/average 1432 330 1102 890 62.15
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computed area under the curve for SVM modules and achieved areas
under the curve of 0.85 and 0.86 for amino acid and dipeptide compo-
sition, respectively.

Combination of BLAST Search and SVMModule—Both the similar-
ity search-based method (BLAST) and the machine learning method
have their strengths and weaknesses. Similarity-based methods are bet-
ter than any other method if the query sequence has significant similar-
ity with any experimentally annotated protein. But it fails in the absence
of similarity. On the other hand the machine learning method SVM is a
general method in which the performance does not depend on similar-
ity between target and query sequences. To improve the performance

both the BLAST search and SVM were combined. In this, the training
set was taken as the data base, and the proteins from test set were used
as query proteins to search against this data base. Each protein from the
test set was used to query against the corresponding data base. Among
all the hits only the top hit (minimum e value) was considered as signif-
icant. If the hit corresponded to a mitochondrial protein then the query
protein was directly assigned as amitochondrial protein. Similarly if the
hit corresponded to a non-mitochondrial protein then the query protein
was directly assigned as a non-mitochondrial protein. Although the
overall performance of the similarity search was quite good, it was
observed that there was no hit for a large number of proteins. For these

FIGURE 2. Average percent composition of each of 20 amino acids in mitochondrial and non-mitochondrial proteins.

TABLE 2
Performance of SVM with different inputs
Amino acid composition, amino acid composition used as input; Dipep. comp., dipeptide composition used as input; NT-25, amino acid composition of the N-terminal 25
amino acids used as input; CT-25, amino acid composition of the C-terminal 25 amino acids used as input; NT-25�R, the whole protein was divided into two parts, the
N-terminal 25 amino acids and the remaining sequence, and the amino acid composition of both fragments was determined and together used as input (vector of 40
dimensions); Split, thewhole proteinwas divided into three parts, theN-terminal 25 amino acids, theC-terminal 25 amino acids, and the remaining sequence, and the amino
acid composition of all three fragments was determined and together used as input (vector of 60 dimensions); AUC, area under the curve. J, c, t, and d are the parameters
used during training of SVM. Values in parentheses represent the maximum accuracy and MCC achieved with those particular parameters of SVM.

Input parameters Parameter Threshold Sensitivity Specificity Accuracy MCC AUC
% % %

Amino acid composition J � 5, g � 0.001, c � 100 �0.3 78.49 78.36 78.37 (88.23) 0.43 (0.46) 0.85
Dipep. comp. J � 5, t � 1, d � 3 �0.3 77.03 79.75 79.38 (88.09) 0.44 (0.47) 0.86
NT-25 J � 8, t � 1, d � 4 �0.2 73.38 73.06 73.10 (88.69) 0.34 (0.44) 0.82
CT-25 J � 6, d � 4, �0.2 64.40 64.33 63.48 (86.22) 0.19 (0.20) 0.69
NT-25�R J � 5, t � 2, g � 0.0001, c � 75 �0.4 82.40 82.45 82.44 (90.426) 0.51 (0.56) 0.89
Split J � 3, g � 0.0001, c � 10 �0.4 82.75 82.74 83.74 (90.39) 0.52 (0.57) 0.90

FIGURE 3. Average percent composition of the first 15 N-terminal amino acid residues of mitochondrial and non-mitochondrial proteins.
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proteins SVM was used to predict whether it is a mitochondrial or
non-mitochondrial protein. In this study different e values from BLAST
were used to assign location. Themaximumaccuracy using this strategy
was around 89% with MCC around 0.63 (Table 3), which is better than
the performance of the BLAST search or SVMmodule alone. This dem-
onstrates that the combination of the similarity search and machine
learning techniques can achieve very high accuracy if used to supple-
ment each other (24).

Analysis of N-terminal and C-terminal Residues—In previous studies
it has been shown that around 25% of proteins have an N-terminal
signal; thus it is pertinent to analyze the amino acid composition of
mitochondrial and non-mitochondrial proteins. Recently Guda et al.
(15) analyzed the 25 residues of the N terminus and the remaining
protein (after removing the 25 residues of the N terminus) for proteins
of different cellular locations. They observed a strong bias in amino acid
composition among them. It was also found that the composition of
N-terminal residues and remaining residues of mitochondrial proteins
was different. We extended their study to analyze the amino acid com-
position of mitochondrial proteins as follows: (i) 15, 20, 25, 30, and 35
N-terminal residues (supplemental Fig. S2a); (ii) remaining residues of
the protein (after removing the 15, 20, 25, 30, and 35 N-terminal resi-
dues) (supplemental Fig. S2b); (iii) 15, 20, 25, 30, and 35 C-terminal
residues (supplemental Fig. S2c); and (iv) remaining residues of the
protein (after removing the 15, 20, 25, 30, and 35 C-terminal residues)
(supplemental Fig. S2d). It was observed that the composition of N-ter-
minal residues from15 to 35 shows the same trend (Fig. 4). This was also
the case when composition was determined without taking into consid-
eration the N-terminal 15–35 residues. When these two compositions
were compared, it was found that there is a clear difference between the
composition at the N terminus of the protein and the remaining part of
the protein. Although residues at the C terminus have a different com-
position then the rest of the protein, it is not as significant as for the
N-terminal residues. We performed similar amino acid composition
analysis for non-mitochondrial proteins.We did not find any significant
difference between amino acid composition of N-terminal, C-terminal,
and remaining residues of non-mitochondrial proteins. We also com-
pared the composition of mitochondrial and non-mitochondrial pro-
teins. As shown in supplemental Fig. S1, N-terminal residues of mito-
chondrial proteins are quite different from those of non-mitochondrial
proteins.

SVM Module Based on N-terminal Sequences—Based on the above
observations, we developed a method using N-terminal residues.
Sequences were represented by binarymatrix; for example for 25N-ter-
minal residues, amatrix of 25� 21was used inwhich a residue at a given
position will be represented by vector of 21 (23). The SVM modules

based on 15, 20, 25, 30, and 35 N-terminal residues were developed and
achieved a maximumMCC from 0.28 to 0.31.

SVMModules Based on Composition of N-terminal, C-terminal, and
Remaining Protein Residues—It was observed that the amino acid com-
position of the N-terminal, C-terminal, and remaining mitochondrial
protein residues was different from that of non-mitochondrial proteins.
Thus we developed SVMmodules based on the following: (i) composi-
tion of N-terminal residues with input vector 20, (ii) N-terminal resi-
dues and remaining residues with input vector 40; and (iii) N-terminal
residues, C-terminal residues, and remaining residues using input vec-
tor 60. The maximumMCC of SVMmodules based on composition of
15, 20, 25, 30, and 35 varies from0.4 to 0.5, which ismuch better than the
SVMmodule based on N-terminal sequence. This was surprising to us
as the N-terminal sequence is supposed to contain complete informa-
tion, whereas the composition has the total number of residues without
order information. It seems that order of residues is not important for
mitochondrial signals, but their presence is important; this is opposite
to the known biological fact. This may be because all mitochondrial
proteins do not have a leader signal, which is ultimately restricting the
SVM to map the relationship between the N-terminal sequence and
their localization. The performance of SVM modules with N-terminal
residue composition and remaining residue composition (input vector
40) varies from an MCC of 0.5 to 0.6 that is better than SVM modules
based on N-terminal residues or full protein. Because the performance
of SVM modules using 15–35 C-terminal residues was very poor
(MCC� 0.20), we dropped it from further analysis. The performance of
SVM module-based split amino acid composition (N-terminal, C-ter-
minal, and remaining residues) called SAAC,where input vectorwas 60,
had an MCC from 0.5 to 0.6.

Hybrid Method: Pfam Domain and SVM Modules—In the method
developed by Guda et al. (15) prediction of mitochondrial proteins was
done on the basis of occurrence of Pfam domains.We adopted a similar
strategy in this study (see “Materials andMethods”). All proteins in our
data set were searched using HMMER against the Pfam data base and a
total of 1662 domains was found. Among 1662 domains 206 were found
exclusively in mitochondrial, 1162 were found exclusively in non-mito-
chondrial, and 147 were found in both type of proteins. A data base
calledMitoPfam,was built that consists of all three types of domains. To
predict whether a protein can be localized in mitochondria or not, we
performed an HMM search against the MitoPfam data base. A protein

TABLE 3
Performance of the combined approach of BLAST and SVM
Here the SVM module trained on split amino acid composition (N-terminal 25
residues, C-terminal 25 residues, and remaining amino acids) was used in combi-
nation with BLAST.

e value
threshold Sensitivity Specificity Accuracy MCC

% % %
1e�1 77.950 91.404 89.266 0.638
1e�2 78.298 90.838 88.846 0.632
1e�3 78.648 90.508 88.622 0.626
1e�4 78.856 89.996 88.224 0.620
1e�5 78.856 89.996 88.224 0.620
1e�10 78.720 89.058 87.416 0.606
1e�20 78.438 87.714 83.238 0.580
1e�30 78.158 86.870 85.486 0.564
1e�40 78.438 86.488 85.208 0.560

FIGURE 4. Performance of different (amino acid composition, dipeptide composi-
tion, and split amino acid composition) SVM modules and the hybrid approach of
SVM and an HMM search in a threshold-independent manner by receiver operating
characteristic plot.
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was assigned as mitochondrial if it has an exclusive mitochondrial
domain or as non-mitochondrial protein if it has an exclusive non-
mitochondrial domain. Using this approach 798 mitochondrial and
5732 non-mitochondrial proteins were assigned. It was found that there
was no hit for a large number of proteins either due to the absence of an
exclusivemitochondrial or non-mitochondrial domain or to no domain
present at all. Thus we developed a hybrid method that combines the
SVMmodule based on split amino acid composition and the occurrence
of Pfam domain. In the hybrid method a protein is predicted to be
mitochondrial or non-mitochondrial if it has an exclusive domain. In
the case where a protein does not have any exclusive domain the SVM
module based on SAAC was used for prediction. The performance of
this hybrid method was evaluated at various thresholds of SVMmodule
ranging from �2 to �2 (Table 4).

Performance on Independent Data Set—In our previous study (19),
we observed a bias in the performance of a method on data used for
testing and training despite jackknife testing (e.g. 5-fold cross-valida-
tion). Thus it is important to evaluate a newly developed method on an
independent data set for unbiased evaluation. The independent data set
used in this study consists of 723 yeast, 412 Drosophila, 352 C. elegans,
320 human, and 99 mouse mitochondrial proteins obtained from
OrganelleDB (20). Our method predicted 571, 361, 198, 277, and 76
proteins corresponding to yeast, Drosophila, C. elegans, human, and
mouse, respectively, of this data set as mitochondrial at default param-
eters. When the same sequences were submitted for prediction on the
MITOPRED server at default parameters (confidence cutoff, 85%), for
yeast,Drosophila,C. elegans, human, andmouse, 480, 304, 160, 249, and
71, proteins, respectively, were predicted as mitochondrial proteins
(Table 5). It has been demonstrated byGuda et al. (15) thatMITOPRED
is better than existing methods like PSORT and TargetP. In their study
they have clearly shown that MITOPRED shows better performance
than other prediction methods like PSORT and TargetP. But the per-
formance on the independent data set clearly shows that our method
has performed even better than MITOPRED despite the fact that both
are developed on the same data set. The possible reason behind thismay
be the fact that we have used both N- and C-terminal composition of
proteins along with the composition of the remaining protein (SAAC),
which is clearly a better parameter than terminal amino acid composi-
tion as shown by the performance of SVMmodules.

Annotation of Proteomes—We chose six complete proteomes, rang-
ing from single celled budding yeast to more complex Drosophila,
C. elegans, human, and mouse, for annotation. The number of proteins
predicted as mitochondrial is shown in Fig. 5. For yeast, MitPred pre-
dicted 561 proteins as mitochondrial among the total 6226, which is
�9% of the total proteome. This is less than what others have estimated
(like Guda et al. (15) and Marcotte et al. (11) who estimated 10% of the
total proteomes or �750 proteins as determined experimentally (25)),
but the difference is obviously due to the fact that we adopted the most
stringent condition during annotation to filter out the false positives.
For Drosophila and C. elegans, the number of mitochondrial proteins
predicted was 1027 (6.3%) and 1071 (4.8%), respectively, from the com-
plete proteome of 16,177 and 22,137 proteins. In Drosophila MITO-
PRED has estimated that �6.35% is mitochondrial protein; this tallies
closely with that of our estimate. ForC. elegans althoughGuda et al. (15)
estimated 4%, Marcotte et al. (11) reported 4.3%. On the other hand for
mouse and human 1144 and 1514 proteins were predicted asmitochon-
drial proteins from the complete proteome set of 28,936 and 35,595
proteins, respectively. In the case of human our method is consistent
with the estimation of 1500 proteins by Taylor et al. (26), Lopez et al.
(27), and Guda et al. (15). Recently Cameron et al. (28) have predicted
the mitochondrial proteins in human by using a very novel and intelli-
gent approach. UsingMitoProt, they first predicted the proteins of yeast
whose subcellular localization was likely to be mitochondria. Taking
these proteins as the query, by using TBLASTN they identified the
human proteins that are likely to be mitochondrial. In addition by using
several stringent filters they predicted 361 human mitochondrial pro-
teins that share close homology with yeast mitochondrial proteins. We
propose that one of the main reasons behind the difference in the num-
ber of predicted mitochondrial proteins between the current method

FIGURE 5. Number of proteins whose potential subcellular location is predicted as
mitochondrial in five representative proteomes by MitPred algorithm.

TABLE 4
Combined result of Pfam search and SVM
Threshold is for cutoff for SVM on the basis of which performance is calculated.
Bold is for the threshold where sensitivity and specificity are roughly equal.

Threshold Sensitivity Specificity Accuracy MCC
% % %

�2.0 99.580 77.408 80.934 0.596
�1.8 99.230 78.770 82.022 0.610
�1.6 98.950 80.498 83.432 0.628
�1.4 98.114 82.542 85.02 0.648
�1.2 96.926 85.488 87.308 0.676
�1.0 94.972 88.314 89.374 0.708
�0.8 92.738 91.626 91.804 0.748
�0.6 88.202 94.522 93.518 0.778
�0.4 84.014 96.554 94.560 0.800
�0.2 79.404 98.138 95.160 0.812
0.0 75.216 98.970 95.194 0.812
0.2 71.098 99.34 94.850 0.796
0.4 67.326 99.684 94.540 0.782
0.6 63.838 99.764 94.052 0.762
0.8 60.834 99.894 93.684 0.746
1.0 59.440 99.932 93.494 0.74
1.2 57.830 99.958 93.264 0.73
1.4 56.922 99.972 93.128 0.722
1.6 56.362 100.000 93.062 0.722
1.8 56.152 100.000 93.028 0.718
2.0 55.942 100.000 92.996 0.716

TABLE 5
Performance of MitPred and MITOPRED servers on mitochondrial
proteins retrieved from OrganelleDB
The prediction was done at default parameters of the web server.

Organism Total number
of proteins

Number of proteins predicted
as mitochondrial

MitPred MITOPRED
Yeast 723 571 480
C. elegans 352 198 160
Drosophila 412 361 304
Mouse 99 76 71
Human 320 277 249
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and MITOPRED is the difference between the numbers of proteins in
the data downloaded from the European Bioinformatics Institute.

Web Server—The method presented here is available on the World
Wide Web in the form of a server, “MitPred.” The World Wide Web
address is available upon request. The user can enter a protein sequence
in any standard format such as FASTA. The server has the option to
choose any of the following: SVM, BLAST � SVM, and Pfam search �
SVM.
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