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Abstract

Background: Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate
annotation of their target proteins and binding sites is required for the complete understanding of reaction
mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD) is one of the most commonly used organic
cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the
past, several NAD binding proteins (NADBP) have been reported in the literature, which are responsible for a wide-
range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target
proteins. However, so far an efficient model could not be derived due to the time consuming process of structure
determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is
needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to
predict NAD binding proteins and their interacting residues (NIRs) from amino acid sequence using bioinformatics
tools.

Results: We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein
Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding
protein chains, where no two chains have more than 40% sequence identity. In this study all models were
developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding
proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His) in NAD interaction, residues like Ala,
Glu, Leu, Lys are not preferred. A support vector machine (SVM) based method has been developed using various
window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum
Matthew’s correlation coefficient (MCC) 0.47 with accuracy 74.13% at window length 17. We also developed a SVM
based method using evolutionary information in the form of position specific scoring matrix (PSSM) and obtained
maximum MCC 0.75 with accuracy 87.25%.

Conclusion: For the first time a sequence-based method has been developed for the prediction of NAD binding
proteins and their interacting residues, in the absence of any prior structural information. The present model will
aid in the understanding of NAD+ dependent mechanisms of action in the cell. To provide service to the scientific
community, we have developed a user-friendly web server, which is available from URL http://www.imtech.res.in/
raghava/nadbinder/.

Background
All organisms posses small molecular weight cofactors
or ligands which function in important metabolic and
regulatory pathways. To understand the function and
basic mechanism behind these ligands, proteins should
be properly annotated. In the present scenario protein
annotation has become a big challenge for computa-
tional biologists due to large gap between the genome

and annotated proteome. Although manual annotation
is the most accurate, it requires more expertise and
time. On the other hand, automated rule based annota-
tion is less reliable, but faster and provides more cover-
age [1]. Several years of enzyme annotation for different
types of ligands led to many useful specialized databases
and tools such as Catalytic Site Atlas [2], Macie [3], Pro-
cognate [4], Wssas [5] etc. These tools with other meth-
ods [6-8] can assign ligand binding sites in a protein if
its structure or close homolog is known. Adenine-based* Correspondence: raghava@imtech.res.in
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dinucleotides such as nicotinamide adenine dinucleotide
(NAD) and flavin adenine dinucleotide (FAD+) are some
of the very important ligands as they are involved in
pathways like glycolysis and photosynthesis. NAD+ and
its phosphorylated and reduced forms, NADP+, NADH
and NADPH, have critical roles in cellular metabolism
and energy production as hydride-accepting and hydride
donating coenzymes. NAD+ is not only coenzyme for
oxidoreductases but also a substrate for three enzyme
classes, namely, ADP-ribose transferases, cADP-ribose
synthases and sirtuins (type III protein lysine deacety-
lases). NAD+ level in the cell compartment are critical
which is maintained by these enzymes. It has been
observed that depletion in NAD+ causes axanopathy
leading to conditions like Alzheimers’s disease (AD),
Parkinson’s disease and multiple sclerosis [9]. Because of
their role, a number of proteins bind to these cofactors,
collectively termed as NAD binding proteins (NADBP).
NADBP are ubiquitous and found in archea, bacteria,
and higher organisms including yeast. Some bacterial
toxins like cholera (CT) exploit the mechanism of
NAD+ binding for their activation [10]. Although NAD
and FAD binding proteins are not totally distinct from
each other as few proteins bind to both cofactors but
through separate domain. Rossmann in 1976 elucidated
the babab as structural motif responsible for the bind-
ing of nucleotides specially NAD (P)+ by comparing
four known crystal structures of NADBP [11]. At the
start of babab motif, a stretch of 30-35 amino acids
was identified that was termed as “fingerprint region”
with the consensus phosphate binding sequence
(GXGXXG). Later 18 NADBP structures were compared
and classified into classical and non-classical structures
[12]. NADBP under the classical group follow the same
binding orientation as described by Rossmann and a
new feature for fingerprint region, a conserved Arg or
Lys at the beginning of the first B strand of babab
unit, was identified. However NADBP in non-classical
category do not even contain this pattern but still bind
to NAD+. Domenighini and Rappuoli (1996) also ana-
lyzed the NAD+ binding sites in ADP-ribosylating
enzymes and extended the NAD+ binding motif slightly
but concluded at the end that their proposed model
could not account for all NADBP [13]. Shirai et al
(2006) predicted the individual nucleotide (adenine, gua-
nine, nicotinamide and flavin) binding sites on target
proteins but the efficiency was less than 40% [14]. In
summary the sequence similarity based methods were
unable to characterize all NADBP and annotation was
further hindered for the unknown sequences. In the
present study, we analyzed 555 NAD-protein complexes
obtained from the Protein Data Bank (PDB) to under-
stand the contribution of each type of residue in the
NAD+ binding site. The aim of this study is to predict

NADBP and NIRs even when there is no similarity with
known structures.
NIRs means amino acid residues which interact with

the ligand through their side chains. Thus we trained
and tested our models on non-redundant set of proteins
where no two proteins have sequence identity greater
than 40%. SVM based models were developed using
amino acid sequence of proteins. In addition we used
evolutionary information generated by PSI-BLAST in
the form of PSSM profile as an input vector for SVM.

Results
Compositional Analysis
We calculated the amino acid composition of NIRs and
non-NIRs in proteins and observed that certain types
of residues like Gly, His, Thr, Ser and Tyr were
more abundant in NIRs in comparison to non-NIRs
(Figure 1). In the literature it is already known that
residues like Gly and His are conserved in the NAD
binding sites, which agrees with our analysis. These
residues are positively charged, neutral or hydrophobic
in nature.

SVM model using binary pattern
SVM models were generated for window sizes 3 to 21
using amino acid binary patterns as input feature (Table 1
and Additional file 1: Supplemental Table S1-S10). We
found maximum accuracy of 74.13% with 0.47 MCC for
window size 17. Decreasing or increasing the window size
decreases the accuracy as well as specificity. Final model
was selected on window size 17, to balance sensitivity and
specificity.

SVM model using evolutionary information
We have observed in the past [15,16] that evolutionary
information provides more information than single
sequence. Thus we developed SVM based model using
PSSM profiles instead of amino acid sequence, using
PSI-BLAST. To optimize window size for predicting
NIRs in a protein, we developed SVM models using dif-
ferent window sizes from 3 to 21 (Table 2 and Addi-
tional file 1: Supplemental Table S11-S20). We got a
maximum accuracy of 87.25% with MCC of 0.75 for 19
amino acid window. Accuracy decreased for window 21
(Additional file 1: Supplemental Table S20). Final model
was selected on window size of 19. To show the NAD-
binder prediction more intuitively, we did prediction on
human aldose reductase (UniProt- P15121, PDB- 2ACS)
as shown in Figure 2, marking NAD, true positive and
false positive residues.

ROC Plot
In order to have a threshold independent evaluation of
our method, we created ROC (receiver operating curve)
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for all the models. ROC plots with Area under curve
(AUC) values were created by using SPSS statistical
package. ROC plots using binary feature for different
window lengths (Figure 3) clearly show that window
size 17 is best suited for sequence based prediction and
window size 19 is most suitable for SVM based model
using PSSM (Figure 4).

Analysis of the rate of false positive prediction
Like any other prediction server, NADbinder could also
give some false positive prediction. In order to analyse
the rate of false positive prediction by NADbinder, we
evaluate our method on a dataset of NAD binding and
non-NAD binding proteins. This dataset contain origi-
nal data of NAD binding proteins and 137 non-NAD
binding (negative) proteins (non-redundant at 40%
CDHIT) which do not bind to any ligands extracted
from the Protein Data Bank (PDB). Combined positive
and negative data was subjected to 5 fold cross

Figure 1 Percentage composition of NAD interacting and non-interacting residues.

Table 1 Performance of SVM model developed using
amino acid sequence (binary pattern) at different
window lengths.

Window
size

Kernel
parameters

Thr* Sen
(%)

Spe
(%)

Acc
(%)

MCC

3 t 2 g 0.1 j 1 c 1 0 63.41 61.27 62.34 0.25

5 t 2 g 0.1 j 1 c 1 0 64.46 65.13 64.79 0.3

7 t 2 g 0.1 j 1 c 1 0 67.98 66.83 67.4 0.35

9 t 2 g 0.1 j 1 c 1 0 69.09 69.32 69.21 0.38

11 t 2 g 0.1 j 1 c 1 0 69.7 71.37 70.54 0.41

13 t 2 g 0.1 j 1 c 10 0 70.81 72.78 71.79 0.44

15 t 2 g 0.1 j 1 c 10 0 71.56 73.89 72.73 0.45

17 t 1 d 3 -0.2 70.28 76.89 74.13 0.47

19 t 2 g 0.1 j 1 c 100 0 71.27 72.49 71.88 0.44

21 t 2 g 0.1 j 1 c 10 0 70.81 73.68 72.24 0.45

*(Thr - Threshold, Sen - Sensitivity, Spe - Specificity, Acc - Accuracy, MCC -
Matthew’s correlation coefficient)

SVM models were trained and tested on a dataset having equal number of
positive and negative data. Bold font shows the performance and parameters
of selected SVM model.

Table 2 Performance of SVM models developed using
PSSM profile of proteins at different window lengths.

Window
size

Kernel
parameters

Thr* Sen
(%)

Spe
(%)

Acc
(%)

MCC

3 t 2 g 1.0 j 1 c 10 0 83.26 82.61 82.93 0.66

5 t 2 g 1.0 j 1 c 10 0 82.59 87.51 85.05 0.7

7 t 2 g 0.1 j 1 c 10 0 82.39 84.67 83.53 0.67

9 t 2 g 0.1 j 1 c 10 0 84.18 86.13 85.16 0.7

11 t 2 g 0.1 j 1 c 10 0 85.28 86.25 85.77 0.72

13 t 2 g 0.1 j 1 c 10 0 85.7 86.52 86.11 0.72

15 t 2 g 0.1 j 1 c 10 0 85.36 86.31 85.84 0.72

17 t 2 g 0.1 j 1 c 10 0 83.69 87.99 85.84 0.72

19 t 2 g 0.1 j 1 c 10 0 86.13 88.37 87.25 0.75

21 t 2 g 0.1 j 1 c 10 0 85.52 87.33 86.43 0.73

SVM models were trained and tested on a dataset having equal number of
positive and negative data. Bold font shows the performance and parameters
of selected SVM model.
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validation. 4 sets were trained on the optimized para-
meter of the SVM and 5th set was tested. We tested
the positive proteins for the sensitivity and result of
negative proteins gave the specificity and ultimately
accuracy of the prediction. The question arises whether
we can discriminate NAD and non-NAD binding pro-
teins based on the percent of NIRs prediction. For each
protein we calculate the percentage of predicted NIRs
over length i.e. (true positive+false positive)/length at
threshold 0, 0.1, 0.2 and 0.3. At the threshold of 0.3, we
find a balance between sensitivity and specificity where
accuracy is achievable up to 72% if used 10% prediction
cutoff (see Additional file 1: Table S28). In short if user
submits an unknown protein of 100 residues and 10 or
more residues are predicted to be NIRs by the server at
threshold 0.3 then the accuracy of prediction will be
72% otherwise the prediction could be considered as
false positive.

Description of Web server
A user-friendly web server ‘NADbinder’ was developed
for the prediction of NIRs in uncharacterized proteins.
The user may submit the amino acid sequence(s) in
‘FASTA’ format. The server generates the evolutionary
profile of all submitted sequences and predicts NIRs. As
this sever allows users to select threshold, we suggest
the users to select higher value if they are interested in
high specificity (high confidence). In case the user is
more interested to cover most of NAD interacting resi-
dues (high sensitivity) then they should select lower
threshold. In the output NAD interacting residues are
displayed underlined in red. The web-server is freely
available at http://www.imtech.res.in/raghava/nadbinder.

Discussion
Small molecular weight cofactors play very important
role in the proper functioning of the cellular machinery.

Figure 2 Structure of human Aldose reductase (2ACS) showing prediction of NAD interacting residues by NADbinder. NAD shown in
magenta, True positives in red and False positives in blue colour (only the portion of protein with residue mentioned is shown here).
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Figure 3 ROC Plot for SVM models developed using single sequence (binary pattern) for window size from 3 to 21. (W indicates the
window length and value in bracket shows Area under curve).

Figure 4 ROC Plot for PSSM based SVM models developed using window size from 3 to 21. (W indicates the window length and value in
bracket shows Area under curve).
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Enzyme and ligand research over the past many years
led to very useful databases and tools for the proper
annotation of ligand targets and enzymes. NAD+ is one
of the factors which bind to proteins having role in
energy transfer, storage, or signal transduction. Binding
of NAD+ changes the conformation of target proteins
and accordingly controls their function. For the under-
standing of their mechanism, structure determination is
a prerequisite, which is a very time consuming process.
Researchers have been trying to analyze the NAD bind-
ing motif and could slightly improve the original nucleo-
tide binding motif identified by Rossmann. Classical
NAD+ binding proteins follow the Rossmann fold model
but non-classical proteins bind to the NAD+ even with-
out Rossmann fold. So far no model could fit all classi-
cal and non-classical NAD+ binding proteins. Analysis
of these proteins through similarity based approaches
could not derive an efficient rule for NAD+ binding site.
Due to the complexity in structure determination and
limitations of available tools there is a need to develop a
sequence and non-alignment based computational meth-
ods for the identification of NAD+ binding sites and
their interacting amino acid residues in proteins. There-
fore we developed the SVM based method using amino
acid binary pattern and PSSM derived evolutionary pro-
file. PSSM profile model performed far better than
amino acid binary pattern. We validated the perfor-
mance of our PSSM model on the classical/non-classical
NAD binding proteins and found that it is able to pre-
dict NIRs in those proteins that were not included in
the training process. Like in classical proteins malate
dehydrogenase (PDB: 1CME; UniProt: P61889) and in
non-classical proteins aldose reductase (2ACS, P15121),
isocitrate dehydrogenase (9ICD, P08200) etc were suc-
cessfully analyzed for their NIRs (only 2ACS result
shown). However we accept the fact that there might be
few false positive interactions also like in any other pre-
diction method. False positive prediction analysis of the
server has been done by taking negative proteins form
the PDB and found that prediction threshold of 0.3 is
the optimum. Based on the above algorithm we devel-
oped ‘NADbinder’ web-server, which is freely available
in the hope that it will help biologists in the identifica-
tion of NAD binding proteins and their interacting resi-
dues for the purpose of annotation, structural
elucidation and structure-function analysis.

Conclusion
In order to understand the proper mechanism of action
and annotation of NAD+ binding proteins we need to
know the amino acid residues interacting with NAD+.
Homology and sequence similarity based methods have
been proved limited for the uncharacterized proteins.
Therefore we developed a SVM based method which,

require only protein sequence for the prediction of
NAD+ binding proteins and their interacting residues
without prior knowledge of structural information.

Methods
Dataset
We extracted 555 PDB ids from SuperSite database [17]
that bind to NAD by giving ‘NAD’ in the cofactor
search field. We used these PDBs in the Ligand Protein
Contact (LPC) server [18] and obtained 1556 amino
acid chains with contact details. In the present study we
considered residues with direct side chain contact with
NAD and marked with an asterisk ‘*’ in the LPC output
to define the NIR. Using CD-HIT [19] only the non-
redundant protein chains, where no two chains had
sequence identity greater than 40%, were included in
the main dataset yielding 195 NAD interacting protein
chains. Although we reduced the redundancy at 90 and
60% also (data not shown), 40% was chosen balance
between number of sequences and redundancy. In the
past 40% cut off was also used by others [16]. From 195
NAD interacting chains we extracted 4772 NIRs and the
rest of the amino acid residues from each protein were
considered as non-NIRs (61256). Equal (4772 positives
and 4772 negatives) and real (4772 positives and 61256
negatives) datasets were created. All dataset is provided
in additional file 2.

Cross Validation
Five-fold cross-validation technique was used to evaluate
the performance of all the models. Here sequences are
randomly divided into five sets of which four sets are
used for training and the remaining fifth set for testing.
The process is repeated five times in such a way that
each set is used once for testing. Final performance is
obtained by averaging the performance of all the five sets.

Pattern or Window Size
It is well established fact that the structural state (i.e. sec-
ondary structure) of a residue is not determined only by
amino acid residue itself but also affected by neighboring
residues. To have the information from the neighboring
residues, for each sequence we created overlapping pat-
terns of different windows size from 3 to 21 amino acid
length. Considering NIR at central residue, we classified
the pattern as positive or NAD interacting pattern and
otherwise termed as negative or non-interacting pattern.
This is similar to the approach adopted by Kumar and
Raghava for the prediction of RNA binding sites in pro-
teins [15]. To create a pattern for the terminal residues
we added (L-1)/2 number of dummy residue ‘X’ at both
termini of the protein sequence (L is length of the pro-
tein sequence). It means for window size 17 we added 8
‘X’ at both sides of the sequence.
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Input Features
Binary profile
Different window patterns were converted into binary
profile [20,21]. Each amino acid in a pattern was repre-
sented by a vector of dimension 21 (e.g. Ala by
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), which contained
20 amino acids and one dummy amino acid ‘X’. A pat-
tern of window length W was represented by a vector of
dimension 21 × W.
Evolutionary profile
Second input feature used was evolutionary profile in
which NAD binding sequences were used for PSSM
profile generation [15,22]. This was incorporated by
using position-specific scoring matrix (PSSM) generated
during PSI-BLAST [23] search against non-redundant
(nr) database. The PSSM matrix was generated by three
iterations of searching with cutoff e-value of 0.001.
PSSM matrix represents the probability of occurrence of
each amino acid residue at each position i.e. residue
conservation at a particular position in a sequence. Here
we created the vector of 20 × W dimensions.
Support Vector Machine (SVM)
In the present study, SVM classifier was used from
freely available SVM_light package [24]. This package is
powerful as well as user-friendly where we can adjust
the parameters and kernel functions like Linear, Polyno-
mial, RBF and Sigmoid. SVM details can be obtained
from Vapnik 1995 [25]. SVM technique has been used
successfully in the past for the wide range of bioinfor-
matics applications [26,27].
Performance Measures
The performance of various models developed in this
study was computed by using threshold-dependent as
well as threshold-independent parameters. In threshold-
dependent parameters we used sensitivity (Sn), Specifi-
city (Sp) or percent coverage of non-interacting residues,
overall accuracy (Acc) and Matthew’s correlation coeffi-
cient (MCC) using following equations. For threshold-
independent parameter ROC plots were generated for
all models.

Sensitivity TP
TP FN

x

Specificity TN
TN FP

x

Accuracy TP +









100

100

TTN
TP + TN FP + FN

x

MCC TP x TN - FP x FN
TP FN TN FP TP FP TN F




      

100

NN
x

  
100.

[TP- true positive; FN- false negative; TN- true nega-
tive; FP- false positive]

Additional file 1: Model performance at different window lengths.
File containing model performance for binary and PSSM profiles at
different window lengths as well as comparison with BLAST.

Additional file 2: Data used in the development of server. File
contains data including protein sequences with NAD interacting residues
and PDB IDs with and without redundancy.
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