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Abstract: The availability of an increased number of fully sequenced genomes demands functional interpretation of the
genomic information. Despite high throughput experimental techniques and in silico methods of predicting protein-protein
interaction (PPI); the interactome of most organisms is far from completion. Thus, predicting the interactome of an organ-
ism is one of the major challenges in the post-genomic era. This manuscript describes Support Vector Machine (SVM)
based models that have been developed for discriminating interacting and non-interacting pairs of proteins from their
amino acid sequence. We have developed SVM models using various types of sequence compositions e.g. amino acid,
dipeptide, biochemical property, split amino acid and pseudo amino acid composition. We also developed SVM models
using evolutionary information in the form of Position Specific Scoring Matrix (PSSM) composition. We achieved maxi-
mum Matthews’s correlation coefficient (MCC) of 1.00, 0.52 and 0.74 for Escherichia coli, Saccharomyces cerevisiae,
and Helicobacter pylori, using dipeptide based SVM model at default threshold. It was observed that the performance of a
predwnon model depends on the dataset used for training and testing. In case of E. coli MCC decreased from 1.0 to 0.67
when evaluated on a new dataset. In order to understand PPI in different cellular environment, we developed species-
specific and general models. It was observed that species-specific models are more accurate than general models, We con-
clude that the primary amino acid sequence based descriptors could be used to differentiate interacting from non-
interacting protein pairs. Some amino acids tend to be favored in interacting pairs than non-interacting ones. Finally, a

web server has been developed for predicting protein-protein interactions.
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BACKGROUND

Proteins are essential macromolecules in living systems.
They interact with each other to form protein complexes,
which are essential for biological processes and cellular
functions. Exploration the of interactome provides the detail
about the cellular processes, signal transduction, metabolic
pathway, regulatory process, quaternary structure prediction
and the basis of biological system [1]. PPIs are important in
modifying or designing a drug especially according to the
nature of protein- protein interaction in disease associated
pathways [2, 3]. Recently, a small molecule inhibitor MI-219
was designed against the p53-MDM2 interaction so as to
make p33 functional, leading to induction of cell cycle ar-
rests in all cells and selective apoptosis in tumor cells [4].
There are a number of experimental techniques for determin-
ing PPI, which includes co-expression data analysis, pull-
down assays, coimmunoprecipitation, tandem affinity purifi-
cation, two hybrid-based methods [5], Mass spectrometry
[6]. protein chips [7], binding reaction methods [8] and hy-
brid approaches [9]. These experimental techniques are
costly and time consuming. There is, thus a need to develop
computational techniques for predicting PPI on a larger
scale.

A large number of computational techniques have been
developed for PPI [10-12], which are based on different
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concepts such as phylogenetic profile [13, 14], conservation
of gene neighborhood [15], gene fusion [16, 17], correlated
mutations [18]. Other approaches use the signature product
method [19] and pair wise kernel methods [20]. Genome
context methods have also been used for predicting PPI,
which includes phylogenetic profile method, frequency of
co-occurrence in predicted operons, and distance between
transcriptional start sites of two genes [21]. In some cases,
both experimental data and prior knowledge were used for
predicting protein interactions [22]. PPIs have also been pre-
dicted from the information about the domains, amino acid
composition of proteins [23], and conjoint triad feature [24],
pseudo-amino acid composition along with gene ontology
(GO) annotation [25], and protein structural and physio-
chemical descriptors from sequence information [26, 27].
For predicting protein-protein interactions, mostly super-
vised machine learning methods (like support vector ma-
chine, random forest method [28] and Bayesian network)
have been used. Despite tremendous progress in the field of
PPI prediction, there are several major issues vet to be ad-
dressed.

Benchmarking

One of the challenges in the field of PPI is benchmarking
of existing methods, as most of methods do not follow stan-
dard evaluation procedure (e.g. jackknife test or k-fold cross-
validation). In addition datasets used in these methods do not
have non-interacting pair of proteins (negative examples),

AWhich is important for fair evaluation. Ben-Hur and Noble

~(2005),compare their dataset with GO annotation. However

there is a possibility that the GO database may have the same
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protein which has been used for training in their program.
Thus, it is difficult to reflect the actual performance of this
method.

Web Server

Implementation of the method/program as a web-server
is another important issue from a user point of view. Most of
the methods for predicting PPI are based on complex theo-
ries like gene fusion technique, correlated mutations, similar-
ity of phylogenetic profiles etc., so it’s difficult to develop
web server using these methods.

Negative Dataset

Creation of negative data set is much more difficult than
that of positive dataset. For example restricting negative ex-
amples to non co-localized protein pairs leads to a biased
estimate of the accuracy of a predictor of PPI [29].

Redundancy between Training and Test Dataset

Developing independent training and test sets for protein-
protein interactions is very challenging. Protein A might
interact with 10 other proteins, and protein B might interact
with many of those proteins, so protein A and B are not in-
dependent, so that all of the interactions with protein A and
B would have to be in either the training set or the test set,
but not some in one and some in the other; likewise, all 10 of
protein A's interactions would have to be in one set, not the
other.

Species-Specific or General Method

There is a need to understand whether PPI is environment
dependent or independent, as different species have different
cellular environment. If protein-protein interactions are inde-
pendent of cellular surroundings, then we should develop a
universal model for all organism otherwise separate model
for each organism would be required.

The aim of this study is to develop a fast and reliable
method for predicting pair of interacting proteins and to ad-
dress some of the issues discussed above. In this study, we
have developed simple composition based SVM models for
discriminating interacting and non-interacting pait’ of pro-
teins. In the past, composition based?ﬁVM-modéTS‘l’.ﬁave been
successfully used for predicting subcellular localization of
proteins [30-35]. The SVM models for predicting PPI are
based on wide range of compositions that include amino
acid, dipeptide, and biochemical property. All models devel-
oped in this study have been evaluated using 5-fold cross-
validation technique and each dataset have positive as well
as negative examples. In order to understand nature of PPI in
different cellular environments, species-dependent and inde-
pendent models have been developed. It was observed that
model developed for an organism is only valid for that or-
ganism; suggesting interaction between proteins is organism
dependent. A web server has been developed for prediction
of protein interactions. Finally, we predicted interacting pairs
of proteins (or interactome) in S. cerevisiae and H. pylori
using our best SVM models at a threshold, which gives more
than 90% precision. We also identified amino acids and
dipeptides important for protein interactions.
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RESULTS

It has been shown in the past that the subcellular localiza-
tion of a protein can be predicted from their amino acid
composition. In this study, we have extended the same con-
cept to predict interacting and non-interacting pair of pro-
teins from their amino acid composition. In case of amino
acid composition, for e.g., a pair of protein is represented by
a vector of dimension 40, each protein by a vector of dimen-
sion 20. We have developed separate SVM models for each
organism (£. coli, S. cerevisiae, H. pylori).

Composition based Methods

We developed SVM based models for predicting interact-
ing pairs of proteins using their amino acid composition.
Table 1 shows the percent of correctly predicted pair of in-
teracting proteins (sensitivity) and probability of correct pre-
diction of interacting pairs (PPV-positive predictive value) at
different thresholds (Table S1 for details). SVM assigns a
score for each pair of proteins; we assign a pair as interacting
pair if it has score more or equal to a value called threshold
value. As shown in Table S1, we achieved MCC 0.98, 0.39
and 0.63 for E. coli, S. cerevisiae and H. pylori respectively
at default threshold 0.0. These results indicate that simple
composition based SVM models can be used to discriminate
interacting and non-interacting pair of proteins with reason-
able accuracy. It has been shown in past that dipeptide com-
position provides more information than simple amino acid
composition and can be used to predict function of a protein
[30, 36]. Thus we developed SVM model for predicting PPI
using dipeptide composition (see materials and methods for
detail). As shown in Table 1 & S1, we achieved MCC 1.00,
0.52 and 0.74 for E. coli, S. cerevisiae and H. pylori respec-
tively. The average accuracies of 99.9%, 75.7%, and 86.8%
have been achieved for E. coli, S. cerevisiae, and H. pylori
respectively. These results indicate that performance of SVM
models based on dipeptide composition is better than other
composition based models. Receiver operating characteristic
(ROC) curves in Fig. (1) and Fig. (2) show the same pattern
for S. cerevisiae and H. pylori dataset respectively. All mod-
els were trained, tested and evaluated using five-fold cross
validation technique.

We developed SVM models using split amino acid (SA)
composition and achieved performance better than amino
acid composition based model and slightly lower than dipep-
tide based model (Table 2 and Table S2). Pseudo-amino acid
based SVM model performed comparable to SA, in E. coli
dataset, and better than SA in S. cerevisiae and H. pylori
datasets (Table 2).

In order to understand the role of amino acids in interac-
tions, we computed the @average compositional biasness’
(ACB) of each amino acid type (see materials and methods).
The magnitude and direction of the ACB value fépresents
how strongly this feature is favored towards interacting or
non-interacting proteins. Positive and negative signs of ACB
show dominancy of that feature towards interacting and non-
interacting pairs, respectively. Some of the values along with
feature name (amino acid) have been given in Table S3. In a
similar fashion we averaged the values of ACB of same
amino acid from proteins of a pair (interacting or non-
interacting) and represented in Table S4. Similarly the im-
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Table 1. Performance of PPI Prediction Method based on Amino Acid and Dipeptide Composition Using SVM 5-Fold Cross Vali-
dation Technique
E. coli S. cerevisine H. pylori
Thresh
AA DP AA DP AA DP

old

Sen PPV Sen PPV Sen PPV Sen PPV Sen PPV Sen PPV
1.0 56.5 100.0 79.0 100 | 263 90.0 282 949 324 95.7 30.0 98.2
0.8 70.9 100.0 88.4 100 351 875 _ 388 932 452 95.0 486 975
0.6 81.1 100.0 93.2 100 442 833 : 489 903 55.9 924 63.0 95.6
0.4 88.7 100.0 96.2 100 52.7 784 | 578 874 66.0 88.0 747 928
0.2 93.0 100.0 98.1 | 100 60.9 74.0 66.0 825 753 85.1 824 : 90.2
0.0 95.7 999 99.2 100 69.1 699 728 | 773 825 80.5 88.5 85.7
-0.2 97.9 999 99.4 100 762 | 656 79.1 : 713 R84 754 929 | 802
-0.4 99.0 99.7 99.6 100 | R824 i 61.6 85.0 654 | 932 70.0 965 | 740
-0.6 994 994 99.7 100 87.8 582 90.0 60.2 95.8 64.6 983 66.6
08 | 996 921 99.7 100 92.0 55.6 94.1 55.9 97.9 58.5 99.3 583
-1.0 i 100.0 284 997 36.5 952 534 96.9 52.8 99.1 547 | 997 531

Where AA and DP are amino acid and dipeptide respectively: Sen is sensitivity and PPV is positive predictive value.
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Fig. (1). The ROC curves showing the performance of different
methods on S. cerevisiae dataset.

Fig. (2). The ROC curves showing the performance of different
methods on H. pylori dataset.

portant dipeptides have been shown in Table S5 and S6. The
amino acid and dipeptide profile obtained from Table S4 and
S6 respectively suggested that the features which are present
in E. coli interaction pairs (features corresponding to positive
ACB values) are favored in H. pylori and S. cerevisiae non-
interaction data (features corresponding to negative ACB

values). Moreover, S. cerevisiae and H. pylori have similar
features among their interacting and non-interacting pairs.
To summarize E. coli has different amino acid sequence spe-
cific signatures in comparison to S. cerevisiae and H. pylori,
whereas the signatures of the latter two are more or less simi-
lar.
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Table2. Comparison of Performances of Various SVM Modules
E. coli H. pylori S. cerevisiae
Methods
Sen Spe Acc MCC Sen Spe Acc MCC Sen Spe Acc MCC
SA 94.5 100.0 99.6 097 85.3 86.8 86.0 0.72 70.8 76.6 73.7 047
PA 96.5 100.0 99.7 0.98 82.5 78.5 80.5 061 68.0 722 70.1 040
- BM 924 99.9 99.4 0.95 77.1 73.5 753 051 | 649 65.8 653 | 031
BD 97.3 100.0 99.8 0.98 84.4 82.2 83.3 0.67 70.2 726 74 | 043
BT 972 1000 | 99.8 0.99 878 84.6 86.2 0.72 728 78.1 75.5 051 |
PSSM ; : - - 83.0 82.0 825 06s | - | - . -
HB - - - - 86.0 88.8 874 0.75 72 | 791 75.2 050

Where Sen, sensitivity; Spe, specificity; Ace, accuracy; MCC, Matthews correlation coefficient: SA, amino acid composition of four equal parts of sequence; PA, pseudo amino acid
composition; BM, biochemical amino acid composition; BD, biochemical dipeptide composition; BT, biochemical tripeptide composition; PSSM, Position Specific Scoring Matrix

and HB is dipeptide concatenated with BT

Biochemical Composition and Evolutionary Information

In order to explore the effect of biochemically similar
amino acid patches on interaction prediction, we first con-
verted the 20 amino acid residues into six classes [37] for all
sequences in the dataset. Further, amino acid, dipeptide and
tripeptide compositions have been computed on the con-
verted sequence alphabet. In a similar study [38] tuple of 4
from possible 6* (1296) tuple types was used to characterize
protein interaction pairs for prediction of interaction. We
have reported the biochemical monopeptide (BM), dipeptide
(BD) and tripeptide (BT) compositions based methods (Ta-
ble 2) in this study. The detailed results of BM and BT have
been included in Table §7. The result of the method based on
BT is comparable to that of classical dipeptide composition,
suggesting that local order of amino acids might act as a sig-
nature characterizing the interacting protein pairs. Moreover,
the lists of important biochemical tripeptides (as estimated
by ACB values) have been given in Table S8 and Table S9.

In order to exploit evolutionary information encoded in
protein sequences, we have calculated PSSM for each pro-
tein in a pair, and presented a binary vector of length 800 for
every interacting and non-interacting pairs. The performance
of PSSM based method has been depicted in Table 2 and
Table S10. We have also tried to combine various descrip-
tors mentioned in this study to represent binary vector and
developed hybrid SVM based prediction methods. One of the
hybrid methods (HB), that concatenated dipeptide and BT,
performed comparable to (in S. cerevisiae) and slightly better
than (in H. pylori) dipeptide composition based method (Ta-
ble 2 and Table $10). At the completion of the present study,
a high-quality binary interaction data set of the S. Cerevisiae
interactome was published in literature [39] (Vidal’s S. cere-
visiae data set). We thought to apply our prediction method
on Vidal's S. cerevisiae data set. After 5-fold cross-
validation technique using Vidal’s S. cerevisiae data set ac-
curacies of 82.4%, 88.1%. and 86.2% were achieved for
amino acid, dipeptide, and biochemical tripeptide composi-
tion. The detail result has been presented in Table 3. Com-
parison of Table 3 with Table 1 and Table 2 shows remark-
able increment in the performance using the Vidal’s S. cere-
visiae data set. Fig. (3) shows the ROCs plot for Vidal’s S.

cerevisiae dataset using amino acid, dipeptide, and bio-
chemical tripeptide compositions.

Comparison with Existing Methods

We have compared our method directly with three other
methods developed in the past. Table 4 shows some statistics
on the working datasets and presents the comparison of our
method with previous ones on the same dataset. Our method
outperformed other existing methods on E. coli and H. pylori
datasets. As evident from an excerpt in introduction section
of this article, it is difficult to compare our S. cerevisiae
model with that of Ben-Hur and Noble (2005). Therefore, we
compared the performance of our S. cerevisiae model on
validation set obtained from Pitre ef al. (2006) [40] (Table
4).

All the existing methods (considered here for compari-
son) used diverse type of descriptors for protein interaction
prediction. Yellaboina ef al. (2007) employed genome con-
text methods (such as distance between transcriptional start
site, phylogenetic profile and frequency of co-occurrence in
operons), and both Martin et a/. (2005) and Ben-Hur and
Noble (2005) used sequence-based kernel methods (signa-
ture product, motif, Pfam, spectrum etc.) implemented within
a support vector machine classifier. Therefore, the results in
Table 4 suggest that our method is capable of resolving the
PPI prediction problem with greater success.

Dataset vs. Performance

Existing literatures in the field of PPI suggested that the
accuracy of a prediction method also depends on the type of
negative dataset. So far we have shown the performances of
our method on the original datasets obtained from their re-
spective sources. Now, in order to explore the variation in
performances with variation in datasets, we have designed
positive and negative interaction datasets as follows.

Variation in Non-Interacting Dataset

As the performance of our method on the E coli dataset
was exceptionally high (Table 1 and 2), we thought of ex-
ploring this issue in depth. We designed some experiments to
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Table3. Performance of 5-Fold Cross-Validation on Vidal's S. cerevisiaze Data Set
Methods
Threshold Amino Acid | Dipeptide Biochemical Tripeptide
Sen Spe Ace PPV | MCC | Sen Spe : Ace PPV | MCC Sen Spe Acc PPV | MCC
1 339 97.4 65.7 93.0 0.41 314 99.6 65.5 98.8 0.42 285 99.7 64.1 98.9 0.40
0.8 46.2 955 70.9 91.2 0.48 46.4 99.2 728 98.4 0.54 43.0 989 71.0 97.6 0.51
0.6 57.3 935 754 89.7 0.54 60.1 98.3 79.2 97.2 0.63 .;5“3‘ 97.7 76.8 96.1 0.59
0.4 68.1 90.2 79.1 87.4 0.60 72.4 96.2 84.3 95.1 0.71 68.5 T 958 822 942 0.67
02 76.2 86.1 81.2 84.6 0.62 81.1 93.6 87.4 92,7 0.75 78.9 92.1 85.5 ;0.9 : 0.72
0.0 83.8 SI.E' - 82.4 81.5 0.65 87.6 88; 88.1 885 0.76 85.8 86.6 86.2 865 i 0.72
0.2 88.8 73.6 ;‘3.1.7 77.1 0.63 91.2 3].0_ 86.1 827 0.73 91.2 78.0 84:6 80.6 0.70
-0.4 92.6 64.9 78.7 ?.’;.5 0.60 95.1 68.4 81.8 ?;1 0.66 948 639 79.4 ?2:.4 | 062
-0.6 95.4 487 72..6 65.0 : 0.50 97.4 516 ?4.3 66.8 0.55 974 484 729 : 65.4 | 0:53
-0.8 97.5 333 65.4 59.4.1 I 0.40 98.8 342 66.5 .60.0 043 989 305 647 58-.? 0.40
-1 98.8 211 60.6_ 55.6 0.31 99.6 19.0 " -5-9.3 552 0.31 99.6 17.6 58.-6 547 | 0.30
Sen, Spe, Acc, and MCC are sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively.
Tabled. Comparison with Existing Methods
Comparison of Methods
Dataset (N/P) Dataset Source Measures
Source Methods Our Method
Sen 79.0 99.2
E. coli
Yellaboina et al. 2007 Spe 100.0 100.0
(13840/1082)
Acc 89.5 99.9
Sen 79.9 88.5
H. pylori (1458/1458) Martin et al. 2005 Pre 85.7 857
Acc 83.4 86.8
Sen 61.0 64.0
S. cerevisiae (100/100)" (Tilt:e;;;' ?:::Z & Spe 89.0 98.0
Acc 75.0 81.0

Where N/P, number of non-interacting pairs/number of interacting pairs; Sen, sensitivity: Spe, specificity; Acc, accuracy; and Pre is precision. The dataset marked * was not used for
model development in our study rather served as validation set.

show the effect of choosing another negative dataset on the
performance of the classifier. The original dataset comprised
of negative interaction pairs from two different cellular loca-
tions (non-colocalized). It has been shown that restricting
negative examples to non co-localized protein pairs leads to
a biased estimate of the accuracy of a predictor of PPI [29].
As discussed in detail in materials and methods, two addi-
tional versions of E. coli negative dataset (random and non-
redundant) have been prepared in this study and optimized
SVM for performance measurement. The results in Table 5§
indicate the marked reduction in performance in case of ran-

dom and non-redundant negative dataset in comparison to
the original (non-colocalized) negative dataset. ROC plots
for E. coli random negative dataset in Fig. (4) also show the
same pattern as observed in other ROC plots for S. cerevisiae
and H. pylori datasets. These results are in agreement with
those from the previous literature [29].

Non-Redundant Proteins in Interacting Pairs

We have further investigated the effect of distribution of
interacting pairs of proteins among 5 sets in 5-fold CV
(cross-validation) on the performance of the classifier taking
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Fig. (3). The ROC curves showing the performance of different
methods on Vidal's S. cerevisiae dataset,

Rashid et al.
Tl R ST S C R ATy
| o
oy
-
g Methods
0 e Dlineptide composiion
2l B e Biochemical tnpeptide
Ammo acid composition
g2
1 e g o ; i : ey
0.0 D2 1.4 0e 08 18
1 . Specificity Fig. (4y

Fig. (4). The ROC curves showing the performance of differ-
ent SVM models on E. coli dataset.

Table5. Performance of SVM Models on Different E. coli Non-Interacting (Negative) Datasets

Descriptors Type of negative dataset Sen Spe Ace MCC
Non-colocalized 97.8 98.9 983 0.97

Amino Acid Composition Random 88.5 83.5 86.0 0.72
Non-redundant 86.1 81.4 83.8 0.68

Non-colocalized 99.0 99.7 99.4 0.99

Dipeptide Composition Random 91.0 884 89.7 0.79
Non-redundant 892 85.2 87.2 0.75

Non-colocalized 982 99.3 98.8 0.98

Biochemical T:;:;ptide Composi- — $9.6 26.6 881 b
Non-redundant 883 83.4 858 0.72

Sen, Spe. Acc, and MCC are sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively.

E. coli dataset. Earlier in all experiments we used random
equal distribution of interacting pairs in five-fold cross-
validation. Now, positive examples (i.e. interacting pairs)
have been clustered such that almost all interactions of a
protein, suppose A, remain in one set. In this way interacting
pairs of any two sets have no common protein, thus facilitat-
ing the non-redundancy in training and test sets. This make
up of positive dataset, that we have called clustered positive
pairs, Wil certainly reduce the bias in performance during
CV and results in Table 6 supported this assumption.

Feature Selection

Though the SVM models were successful in discriminat-
ing interacting and non-interacting pairs, they do not provide

any information about amino acid residue, dipeptide or bio-
chemical tripeptide involved in interaction. This is a major
problem with most machine learning techniques; they work
like a black box. For example, in our dipeptide based model
we have 800 features (400 for each protein); a user may wish
to know the important dipeptides contributing in interaction.
This is not only important to understand interaction between
two proteins but also for reducing the number of features
used in model development.

Based on the ACB (see materials and methods) value,
features have been selected for model development. The
comprehensive result has been presented in Table 7. The
performance of the method approached its maximum value
(when all the features have been included in model develop-
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Performance of SVM Models on E. coli Dataset* where Training and Test Sets Do Not have Redundant Protein in Inter-

Descriptors Type of Negative Dataset Sen Spe Acc MCC
Non-colocalized 947 99.2 i 97.0 0.94
Amino Acid Composition Random 75.8 84.8 80.3 061
Non-redundant 74.1 82.8 ; 785 0.57
Non-colocalized 97.3 99.7 It 98.5 0.97
Dipeptide Composition Random 80.0 89.9 ;; 85.0 0.70 o
Non-redundant 77.0 g 85.4 ; 81.2 0.63
Non-colocalized 97.0 ‘. 99.3 ! 98.2 0.96
Biochemical Tiiiptide Composi- Random 795 ; 873 ;: 834 0.67
Non-redundant 773 j 84.1 f 80.7 062

Sen. Spe, Ace, and MCC are sensitivity, specificity, accuracy, and Matthews correlation coefficient, respectively. * E. coli dataset consist of 1082 interacting and 1082 non-interacting

protein pairs.

Table7.  Performance of SYM Models Developed on Selected Features of Different Descriptors Using E. coli Interaction Dataset*
Selected Features f
Descriptors Sen | Spe Ace MCC
ACB+ ACB - |
5 5 74.8 74.8 74.8 0.50
10 10 88.0 3 75.0 815 0.64
Amino Acid Composi-
; 15 15 80.2 878 84.0 0.68
tion | |
All All 88.5 835 86.0 0.72
i
I I

Feature Sety | 83.6 844 84.0 | 0.68

10 10 { 709 835 77.2 0.55

20 20 ’- 80.2 860 83.1 0.66

Dipeptide
30 30 823 852 83.7 0.68
Composition

40 40 814 813 81.4 0.63

All All 91.0 88 4 89.7 0.79

10 10 774 733 753 0.51

Biochemical 20 20 805 79.6 80.0 0.60
Tripeptide 30 30 845 828 836 0.67
Composition 40 40 848 831 839 0.68
All All 89.6 86.6 88.1 0.76

Where * is dataset having 1082 random non-interacting pairs and 1082 interacting pairs, and Sen, Spe, Acc, and MCC are Sensitivity, Specificity, Accuracy, and Matthews Correla-
tion Coefficient. ACB+ and ACB- are number of features having positive and negative ACB values respectively. “All” means total number of features for that descriptor, given in
Table 5. | Features selected by WEKA software using wrapper evaluation and genetic search methods. 17 features have been selected

ment, denoted as “All” in Table 7) as numbers of selected
features were increased. For example, in case of dipeptide
composition only 80 features (40 having positive and 40
negative ACB values) gained accuracy and MCC of 81.4%
and 0.63 with respect to its maximum performance of 89.7%
and 0.79 when all 800 features were included for model de-

velopment. We also applied standard feature selection algo-
rithm using wrapper evaluation and genetic search methods
implemented in WEKA (Waikato Environment for Knowl-
edge Analysis). The total 17 amino acids have been selected
on which SVM CV performed with 84.0% accuracy (“Fea-
ture set™ in Table 7).
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Cross-Species Prediction

So far we have developed SVM models for each organ-
ism separately. Current literature in subcellular location pre-
diction suggested that organism specific prediction methods
are better than generalized ones [30, 36, and 41]. We also
hypothesized that cellular environment affects the interaction
between proteins. Therefore, to full proof this hypothesis we
tried to classify interaction dataset of one species on the
model developed on another species, and vice-versa. The
results (in Table 8) pointed out that the cross-species classi-
fications have shown remarkable low performance than their
corresponding one within the species. By critical observation
of Table S4, it came to light that some amino acid residues
(valine, arginine, glycine, leucine, isoleucine, phenylalanine
and proline) which were favored in E. coli interaction data
(positive ACB value) were present in S. cerevisiae and H.
pyvlori non-interaction data (negative ACB value). Moreover,
S. cerevisiae and H. pylori interaction data have similar
amino acid profile in Table S4. These observations can be
justified by the results of Table 8, where the S. cerevisiae
and H. pylori interactions could be predicted poorly on E.
coli model and to a substantial performance among them-
selves. Anyway the species specific models (E. coli-to-E.
coli, H. pylori-to-H. pylori, and S. cerevisiae-to-S. cere-
visiae) performed better than the cross-species ones.

In a similar study Martin et al. (2005) also showed that
the prediction of protein interaction of one organism on an-
other organism’s interaction data resulted in a poor perform-
ance. These findings suggested the unique makeup of protein
interaction profile maintained in a species.

Interactome Prediction

In order to evaluate any bioinformatics method, normally
MCC value is maximized, as it takes care of over- and un-
der-prediction. We computed the performance where sensi-
tivity and specificity come close to each other in order to
make balance in prediction while keeping a high MCC value.
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Though, theoretically this is a logical way to evaluate any
prediction model, it is not readily acceptable to experimental
biologists. Biologists are much more interested in probability
of correct prediction of positive examples (see PPV values in
Table 1) rather than high sensitivity or MCC values. There-
fore, for predicting interactome we have selected the thresh-
old at very high PPV value. Based on the SVM models de-
veloped exploiting dipeptide composition, we have predicted
the interactome of S. cerevisiae and H. pylori. Since, E. coli
dataset was comprised of functional interactions; we didn’t
predict £. coli interactome. Out of approximately 17 million,
and 1.2 million all possible binary interactions (excluding
self interaction) for S. cerevisiae, and H. pylori respectively,
the number of predicted interactions are 196139, and 17233.

Web-based Prediction Server

Some existing web-servers for PPI prediction are Protein-
Protein Interaction Prediction [42], InterPreTS [43]. Protein-
Protein Interaction Prediction Server [23], PIPE [40] etc. that
accept protein sequences as input. We have also imple-
mented our method as a web-server called “ProPrint”
(http://www.imtech.res.in/raghava/proprint). Some of the
existing methods have very low coverage while others take a
lot of time (up to 400 hrs in case of PIPE) to predict a binary
prediction. We have tested the performance of our prediction
server on the validation set provided by Pitre e al. (2006)
(Table 4). In comparison “ProPrint” is fast (taking few sec-
onds for a binary prediction), reliable, and accurate.

DISCUSSION

We demonstrated that PPI can be predicted by using sim-
ple compositional values, such as amino acid and dipeptide
composition in diverse organisms. To the best of our knowl-
edge we used dipeptide composition for the first time for PPI
prediction. Also, biochemical classes’ composition was also
proved to be capable of predicting PPI (Table 2 and Table
§7). We conclude that the sequence-based protein-protein
interaction signature/profile is by and large species specific

Table8. Comparison of Performance between Prediction within a Species and Cross-Species Prediction Using Dipeptide Composi-
tion Feature and SVM
Cross-Species Prediction Sen Spe Acc MCC
E. coli-to- E. coli 99.2 100.0 999 0.99
E. coli-to-S. cerevisiae 528 46.4 496 -0.01
E. coli-to-H. pylori 486 525 50.5 0.01
S. cerevisiae-to-S. cerevisiae 728 78.6 757 0.52
S. cerevisiae-to-E. coli 534 66.9 65.9 0.11
S. cerevisiae-to-H. pylori 532 544 i 538 0.08
H. pylori-to-H. pylori 885 85.2 86.8 0.74
H. pylori-to-E. coli 40.6 76.6 74.0 010
H. pylori-to-S. cerevisiae _ 65.8 46.1 559 0.12 B

Sen, sensitivity; Spe, specificity; Acc, accuracy; and MCC is Matthews Correlation Coefficient. Cross-species prediction, let A-to-B is prediction of organism B’s interaction on

organism A's model.
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(Table 8 and Table 84). We have also shown that PPI predic-
tion performance greatly depend on the type of negative
dataset used for SVM optimization (Table 5). To reduce the
redundancy between any two sets during 5-fold CV, we clus-
tered positive examples such that almost all the interactions
of a particular protein remain in one set. By comparing the
performance of the method after clustering (Table 6) with
that of non-clustered positive example (Table 5), we come to
a conclusion that clustering reduces the rate of correct pre-
diction of positive examples (sensitivity). Our feature selec-
tion experiment concludes that the wrapper based method
outperformed our ACB based method (Table 7). Using
amino acid composition, wrapper selected only 17 features
compared to 30 features (15 ACB+ and 15 ACB-) by ACB
based method while retaining the performance (of 84.0%
accuracy) (Table 7). The detailed results are in Table 7.

We studied PPI prediction in great detail by utilizing the
information from amino acid sequence alone. The perform-
ance of our method is better than existing methods (Table 4)
to predict PPI. Moreover, we discussed comprehensively the
difficulties in predicting protein interactions- some of them
are negative dataset selection, clustering of positive exam-
ples in 5-fold CV, cross-species prediction etc.

CONCLUSIONS

The current study suggested a simple and reliable way of
predicting PPI. Amino acid sequence based descriptors are
efficient in discriminating interacting pair from non-
interacting one. Contribution of amino acid residues(s) in
protein interaction follow different pattern in various organ-
isms. Model developed on one organism could not be ap-
plied to predict interaction in another organism. Some amino
acids contribute substantially in interaction while others do
not. Our method shows better performance than existing
genome context methods. Using our models, genome wide
PPI prediction (interactome) has been achieved for H. pylori
and Saccharomyces cerevisiae. Examination of existing PPI
prediction methods and their complexity necessitated the
development of our simple, efficient, and easy to apply
method. ProPrint may be considered as complementary to
other protein interaction prediction methods to get a more
comprehensive and clear picture of the interactome.

MATERIALS AND METHODS

Our method is alignment free. Alignment free methods
have successfully been used in prediction of subcellular loca-
tion and function of a protein [30, 31, 36, 44-46].

Datasets

Protein interaction datasets have been created separately
for three species namely E. coli, S. cerevisiae and H. pylori.
We got the £ coli functional interaction dataset from the
Yellabonia et al. (2007); it contains 1082 positive interac-
tions and 13840 negative binary interactions in which nega-
tive datasets are formed by combination of one periplasmic
and one cytoplasmic protein (non-colocalized). The S. cere-
visiae physical interaction dataset obtained from the Ben-Hur
and Noble (2005), consists of 10517 protein pairs for posi-
tive as well as negative examples in which negative dataset
was created randomly. H. pylori physical interaction dataset
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was obtained from Martin ef al. (2005) containing equal
number of 1458 interactions and non-interactions (random
pairs which do not show interaction).

Feature Extraction

Different features such as amino acid, dipeptide, pseudo
amino acid, split amino acid composition and also biochemi-
cal descriptors have been extracted from amino acid se-
quences. These features were calculated separately for each
protein sequence in a protein pair and then concatenated the
features of each sequence to represent binary vector.

Sequence Composition

Amino acid composition is the frequency of each type of
amino acid in a protein sequence. We have generated a
dipeptide matrix of size 20x20 from 20 types of amino acids.
Dipeptide (n + 1), where n is the position of each residue
along the length of protein sequence, composition was calcu-
lated as ratio of occurrence of a particular dipeptide (out of
400) by total number of dipeptides in the sequence. Split
amino acid composition is simply the amino acid composi-
tion of four equal parts of the protein sequence, making fea-
ture length of 80 (4*20).

Biochemical Descriptors

The 20 amino acid residues are classified into six bio-
chemical similarity classes namely B, J, O, U, X and Z [37].
These classes contain [IVLM], [FYW], [HKR], [DE],
[QNTP] and [ACGS] amino acids respectively. The amino
acid sequences are decoded based on this classification. Fur-
ther, this decoded stretch (for e.g. BIOUBJZX....) was used
for computation of different compositions. The biochemical
monopeptide compositions were similar to amino acid com-
position but length of the binary vector was 6. For biochemi-
cal dipeptide compositions, total 36 (6*6) features were ex-
tracted for a protein and 72 features for a pair. Biochemical
tripeptide was calculated by total number of each type of
tripeptides divided by total aumbertripeptides in the protein
sequence. Totally, 216 (6x6x6) features were extracted from
a protein sequence that is 432 for a protein pair.

Pseudo Amino Acid Composition

Pseudo-amino acid (PA) compositions were calculated
by using perl script based on the concept of Chou's pseudo-
amino acid composition [25, 44]. We considered the parallel
correlation type and the hydrophobic parameters for calculat-
ing the pseudo amino acid composition. Further, one feature
is added to the standard set of features that reflects the se-
quential order of the protein sequence. In this case, we have
dimensionality of 42 for a feature vector representing inter-
action pair.

Composition of Position-Specific Scoring Matrix (PSSM)

The PSSM profile for each protein was generated using
PSI-BLAST [47] by searching the protein against NR data-
base obtained from NCBI. The PSI-BLAST was used with
cut-off value 0.001 with three iterations. The PSSM scores
were normalized in order to get values between 0 and 1, and
then position specific composition of each amino acid was
calculated. This way we got composition of amino acids with
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evolutionary information in form of 400 values [30] for a
protein and 800 for a pair of protein.

Negative Dataset Selection

We selected protein pairs uniformly at random from the
set of all protein pairs that are not known to interact [20, 38,
and 48]. Moreover, we also excluded those negative pairs
which are having at least one partner that is present in posi-
tive dataset. We used such a set of non-interacting pairs for
further consideration and named it negative pair database.
Now we formulated two strategies to make two different
negative datasets each of 1082 pairs.

Random Non-Interacting

It is the set of 1082 pairs selected randomly from nega-
tive pair database.

Non-Redundant Non-Interacting

It is the set of 1082 pairs from negative pair database
such that none of the protein is repeated.

Selection of sequence-based features contributing in PPI
prediction

Average compositional bias (ACB) for each feature of a
descriptor was calculated (Eq. 1) from pairwise interaction
data. Considering amino acid composition as a descriptor we
computed 20 ACB values (since maximum 20 natural amino
acid residues constitute protein molecule) for a protein and
40 ACB values (20*2) for interacting or non-interacting
pairs.

Average Compositional Biasness (ACB)

It is the ratio of difference of summation of composition
values for a particular feature of the descriptor from positive
examples and negative examples and sum of summation of
composition values for a particular feature of the descriptor
from positive examples and negative examples. The formula
for computing ACB was as follows-

i Al
Z_(_fp;'+ Z(?m'
=l =l Eq.(1)

Where Cp and Crn are composition values for a particular
feature, say alanine, from positive examples and negative
examples, and L and M are total number of positive and
negative examples respectively. Likewise we have 40 ACB
values for interaction dataset for a particular descriptor (here
it is amino acid composition).

Then we sorted out these ACB values in descending or-
der in a list. The positive ACB value for a feature stated that
particular feature is dominant in interacting pair and vice-
versa. Now we trained SVM taking the equal number of fea-
tures having positive ACB values from the top of the list and
equal number of features having negative ACB values from
the bottom of the list. We tried to optimize this SVM to ap-
proach the performance of the original model that is trained
on all 40 compositional values. Similar methodology has
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been applied on dipeptide and biochemical tripeptide de-
scriptors.

Wrapper Based Attribute Selection

Feature (or attribute) Subset Selection (FSS) is a process
of identifying input features which are relevant to the super-
vised or unsupervised learning (or data mining) problem. We
used wrapper evaluator with genetic algorithm based search
method to select a feature set for supervised classification
oriented problem. Wrappers are a popular type of evaluator:
they calculate a score for a subset by inducing a classifier
using only those attributes. Wrappers tend to lead to superior
accuracy, but need high computational effort, compared to
so-called filter methods. Filters use statistical characteristics
of the data for evaluation that are independent of the classi-
fier. We exploited wrapper based FSS algorithm imple-
mented in WEKA [49].
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