
1Q1

2

3Q2

4

5

6
7
8
9

10
11
12
13
14
15
16
1729

3031

32

33

34Q4

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Genomics xxx (2015) xxx–xxx

YGENO-08713; No. of pages: 7; 4C:

Contents lists available at ScienceDirect

Genomics

j ourna l homepage: www.e lsev ie r .com/ locate /ygeno
Identification of protein-interacting nucleotides in a RNA sequence using
composition profile of tri-nucleotides
FBharat Panwar 1, Gajendra P.S. Raghava ⁎
Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
 O

⁎ Corresponding author at: Bioinformatics Centre, Ins
Sector 39A, Chandigarh, India. Fax: +91 172 2690632, 26

E-mail addresses: bharat@imtech.res.in (B. Panwar), ra
(G.P.S. Raghava).

URL: http://www.imtech.res.in/raghava/ (G.P.S. Ragha
1 Present address: Department of ComputationalMedici

Michigan, Ann Arbor, MI 48,109, USA.

http://dx.doi.org/10.1016/j.ygeno.2015.01.005
0888-7543/© 2015 Published by Elsevier Inc.

Please cite this article as: B. Panwar, G.P.S. R
Oa b s t r a c t
a r t i c l e i n f o
18

19

20

21

22

23

24

25

26

27

28
Article history:
Received 2 April 2014
Accepted 23 January 2015
Available online xxxx

Keywords:
Protein-interacting nucleotide (PIN)
Binary profile of patterns (BPP)
Tri-nucleotide composition profile of patterns
(TNCPP)
SVM
Prediction
RNApin
 E

D
 P

R

The RNA–protein interactions play a diverse role in the cells, thus identification of RNA–protein interface is essen-
tial for the biologist to understand their function. In the past, severalmethods have beendeveloped for predicting
RNA interacting residues in proteins, but limited efforts have been made for the identification of protein-
interacting nucleotides in RNAs. In order to discriminate protein-interacting and non-interacting nucleotides,
we used various classifiers (NaiveBayes, NaiveBayesMultinomial, BayesNet, ComplementNaiveBayes,
MultilayerPerceptron, J48, SMO, RandomForest, SMO and SVMlight) for prediction model development using
various features and achieved highest 83.92% sensitivity, 84.82 specificity, 84.62% accuracy and 0.62 Matthew's
correlation coefficient by SVMlight based models. We observed that certain tri-nucleotides like ACA, ACC, AGA,
CAC, CCA, GAG, UGA, and UUU preferred in protein-interaction. All the models have been developed using a
non-redundant dataset and are evaluated using five-fold cross validation technique. A web-server called RNApin
has been developed for the scientific community (http://crdd.osdd.net/raghava/rnapin/).

© 2015 Published by Elsevier Inc.
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C1. Introduction

The interaction of RNA molecules and RNA-binding proteins (RBPs)
play diverse roles in cells including protein translation, gene expression
and regulation [1]. There is a large amount of RNA present in every cell,
but these RBPs are selectively bound to the particular RNA at a specific
site [2,3,4]. Role of RNA–protein interactions is well established for the
complete functionality of cell, and in the case of its failure, this leads
to the various human genetic diseases [5] such as fragile X syndrome
[6], paraneoplastic neurologic syndromes [7], spinal muscular atrophy
[8], myotonic dystrophy [9] and fragile X tremor ataxia syndrome [10].

Detection of protein interacting nucleotides is important to under-
stand the underlying mechanism of RNA–protein interaction. X-ray
crystal structure determination of RNA–protein complexes is a common
practice to detect PINs in RNA but structural availability of these com-
plexes is very low in comparison to total protein interacting RNAs.
There are several other experimental techniques such as RNA EMSA
[11], SELEX (systemic evolution of ligands exponential enrichment),
CLIP [12], pull-down assay, oligonucleotide-targeted RNase H protec-
tion assays [13], RIP-ChIP [14], ribonomics [15] and Ribotrap [16] avail-
able for the detection of protein binding RNAs. These techniques are
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expensive, laborious and unable to provide exact information of protein
interacting nucleotides. In the past, several methods have been devel-
oped for the prediction of RNA interacting residues (amino acids) in
the protein sequences [17,18,19,20] but limited efforts have been
made for predicting protein interacting nucleotides (PINs) in the RNA
sequences [21]. Therefore, there is an urgent need to develop computa-
tional tool for this problem.

Recently, many studies have suggested important steps to develop
any biological prediction method [22,23,24,25,26,27,28]. In this study
a systematic attempt has been made to develop in silico tool for the
prediction of PINs in RNA sequences. We analyzed the patterns of
both protein interacting and non-interacting nucleotides and found
that significant differences were present. A machine learning technique
‘support vector machine’ has been applied. We used different binary
and compositional approaches and achieved highest 0.62 MCC and
0.889AUC by tri-nucleotide composition profile of patterns (TNCPP) ap-
proach. In order to provide service to the global scientific community,
this TNCPP based prediction model has been implemented in the form
of a web-server called RNApin.

2. Material and methods

2.1. Datasets

We retrieved a total of 1546 protein-interacting RNA chains (RNA-
1546) of PDB from PRIDB database [29]. We used these RNA chains
and created 25% non-redundant ‘RNA-208’ dataset of 208 RNA chains
using BLASTCLUST software. We considered only RNA chains having
p://dx.doi.org/10.1016/j.ygeno.2015.01.005
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length of more than 10 nucleotides. Furthermore, we assigned each nu-
cleotide of these RNA chains into protein interacting and non-
interacting nucleotides using cutoff distance of 5.0 cutoff Å. It means
that if the distance between nucleotide and any amino acid of protein
chains was less or equal than 5.0 Å, then nucleotide assigned as protein
interacting otherwise is assigned as non-interacting. In this way, we
assigned a total of 46,582 nucleotides of RNA-208 dataset into the
10,198 protein interacting and 36,384 non-interacting nucleotides. We
used 5.0 Å as cut-off because this contains almost all different kind of
interactions and mostly used in the past for the prediction of RNA-
interacting amino acids [30].

2.2. Creation of sliding window

In the past, sliding (overlapping) window based strategy has been
applied in various residue/nucleotide level prediction methods [20,31,
17]. In this study, we also created sliding window patterns of different
3–25 lengths from RNA-208 dataset. If the central nucleotide of the
window was protein-interacting then whole window pattern was con-
sidered as positive pattern otherwise considered as negative patterns
[32]. To generate fixed length window size of terminal nucleotides, we
added a dummy ‘X’ nucleotide at both terminals of each RNA chain.
The number of dummy nucleotides was calculated with (L − 1) / 2
formula (where L is the length of the pattern). It means that each nucle-
otide of RNA-208 dataset was once used at the central position of
window pattern. Finally, we created a total of 10,198 positive and
36,384 negative patterns.

2.3. Binary profile of patterns

The numerical representation of window patterns is necessary for
the machine learning tools, and BPP based strategy is one of the widely
adopted approach for the window-based machine learning [31]. In BPP
approach, we represented A, C, G, U and X nucleotides of all window
patterns in the binary form of {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0},
{0,0,0,1,0} and {0,0,0,0,1} respectively. BPP generated five times higher
input features than the window size (e.g. 19-nucleotide long window
pattern generates a total of 95 (19 × 5) input features). These binary
representations ofwindowpattern give information of nucleotide avail-
ability at a specific position during machine learning based prediction
model development.

2.4. Composition profile of patterns

The composition ofwindowpattern can also be used as input feature
of machine learning [33,34].

2.4.1. Mono-nucleotide composition profile of patterns
In MNCPP, we calculated mono-nucleotide composition of all nucle-

otides (A, C, G, U and X) for each window pattern separately. These five
numerical values of composition were used as SVM input.

2.4.2. Di-nucleotide composition profile of patterns
In DNCPP, the di-nucleotide (AA, AC, AG, CG, AU,…, XX) composition

of each window pattern was calculated separately. It provided a total
of 25 numerical values, which were used as SVM input. The DNCPP
approach has advancement over MNCPP and that it also provides
information of neighboring nucleotides.

2.4.3. Tri-nucleotide composition profile of patterns
In TNCPP, we calculated tri-nucleotide (AAA, AAC, AAG,…, XXX)

composition of each window pattern separately. For each window
pattern, we found a total of 125 numerical values, which were used as
SVM input features.
Please cite this article as: B. Panwar, G.P.S. Raghava, Genomics (2015), htt
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2.5. Support vector machine

In this study, a machine learning technique, support vector machine
(SVM) was applied, which is based on the structural risk minimization
principle of statistics learning theory. SVMs are a set of related super-
vised learning methods used for classification and regression mode
[35]. It has options of different parameters and kernels (e.g. linear, poly-
nomial, radial basis function and sigmoidal) to optimize according to
need. We implemented SVMlight Version 6.02 package [36] of SVM and
machine learning. We applied various parameters and three different
(linear, polynomial and radial basis function) kernels to develop differ-
ent prediction models.

2.6. WEKA

WEKA is a single package and platform of different classifier [37]. We
appliedWEKA 3.6.6 version, which consists of different classifiers such as
NaiveBayes, NaiveBayesMultinomial, BayesNet, ComplementNaiveBayes,
MultilayerPerceptron, J48, SMO, RandomForest and SMO. We have used
all these machine learning algorithms for the development of different
prediction models.

2.7. Five-fold cross validation

Thevalidation of themodel is an important step for thedevelopment
of any prediction method. There are several techniques available for
validation of any prediction models like jack-knife test or leave-one-
out cross validation (LOOCV), n-fold cross validation etc. [38]. Although,
jackknife or LOOCV cross-validation is the most objective and consis-
tent, nut is it time-consuming especially for the residue-level prediction
[17,25,39]. In this study, we used widely accepted five-fold cross-
validation technique for training, testing and evaluation of SVMmodels
[40,41]. In this process, first we divided all positive and negative win-
dow patterns into five parts randomly. Each of these five sets consists
of one-fifth of total positive and one-fifth of total negative window
patterns. In five-fold cross validation technique, we used four sets as
training and the remaining one set as testing. This processwas repeated
five times in such a way that each set was used once as a test set. We
calculated performance of each test set and overall performance of the
prediction model is an overall performance of these five test sets.

2.8. Evaluation parameters

We used various evaluation parameters such as sensitivity (Eq. (1)),
specificity (Eq. (2)), accuracy (Eq. (3)) and MCC (Eq. (4)) values for
evaluating prediction models [42]:

Sensitivity ¼ TP
TP þ FN

� 100 ð1Þ

Specificity ¼ TN
TN þ FP

� 100 ð2Þ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

� 100 ð3Þ

MCC ¼ TPð Þ TNð Þ− FPð Þ FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FP½ � TP þ FN½ � TN þ FP½ � TN þ FN½ �p ð4Þ

where TP, TN, FP and FN are True Positives, True Negative, False Positives
and False Negatives respectively.

The above-mentioned parameters are threshold-dependent; there-
fore, we also calculated threshold-independent evaluation parameter,
AUC (Area Under Curve) values for each prediction model in the ROC
(Receiver Operating Curve) plots. The RNApinweb-server provides pre-
diction results by calculating probability score for each nucleotide of the
given RNA sequence. In order to present SVM score effectively, we
p://dx.doi.org/10.1016/j.ygeno.2015.01.005
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calculated probability score using Eq. (5). We present score for display
single digit between 0 to 9 and called probability score in this study. De-
pending on model SVM score vary between 2.5 (around) and −2.5
(around). We converted SVM score into probability score using the fol-
lowing steps. First, all SVM scores of more than 1.5 were assigned 1.5
and likewise less than −1.5 were assigned as−1.5. This way all score
falls between −1.5 to 1.5. Secondly, 1.5 is added to each score so
score falls between 0.0 to 3.0. In order to keep the number between 0
U
N
C
O

R
R

Fig. 2. Compositions of protein-interacti

Please cite this article as: B. Panwar, G.P.S. Raghava, Genomics (2015), htt
to 9, we divide each number by 3.0 and multiplied by 9. The following
equation is used for computing the probability score.

Probability score ¼ int
SVMscore þ 1:5

3
� 9

� �
ð5Þ

We used probability score in RNApin webserver instead of simple
SVM score for each nucleotide because it is easy to display with every
ng and non-interacting nucleotides.

p://dx.doi.org/10.1016/j.ygeno.2015.01.005
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nucleotide of RNA sequence. The probability scores range from 0–9,
where scores of 0–4 and 5–9 predicted as non-protein interacting and
protein-interacting nucleotides respectively (at default 0.0 threshold
level).

3. Results

3.1. Analysis of protein interacting nucleotides

Initially we extracted a total of 1546 protein-interacting RNA chains
from PRIDB database [29] and used for our preliminary analysis.We an-
alyzed amino acids wise interaction preference of different nucleotides
and found that arginine, lysine and glycine were three most preferred
whereas cysteine, methionine and tryptophan were non-preferred nu-
cleotide interacting amino acids (Fig. 1). These observations agree
U
N
C
O

R
R

Fig. 4. Di-nucleotide composition of protein interacting
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with previous studies on RNA–protein complexes [17,43].We also com-
pute preference of residueswith different nucleotides but no preference
was observed.Moreover, we analyzed length-wise variation of a total of
35,063 protein interacting nucleotide stretches in RNA-1546 dataset.
Most of the interacting stretches (92.88%) were 1–15 nucleotides long
but single, di and tri-nucleotides were most abundant. Earlier Gromiha
et al. showed that 17%, 15%, 15%, 16% and 11% of binding stretches are
accommodatewithmono, di, tri, tetra and penta nucleotides respective-
ly [43] whereas we found that 17%, 17%, 16%, 12%, and 9% of stretches
are constituted bymono, di, tri, tetra and penta-nucleotides respectively
(Supplementary Fig. S1).

We calculated nucleotide compositions and found that there is no
significant difference between the protein interacting and non-
interacting nucleotides (Fig. 2); these observations agree with the
previous study [43]. We calculated the composition of all possible pair
of di-nucleotides (Supplementary Fig. S2) and tri-nucleotides (Supple-
mentary Fig. S3) and found that there are some differences present in
the compositions.

In the past, various residue/nucleotide level prediction methods
have been developed on the basis of overlapping (sliding) window
pattern strategy [20,31,17]. In this,we created overlappingwindowpat-
terns of different 3–25 lengths from RNA-208 dataset. A pattern is
assigned protein interacting or positive if the nucleotide at its center is
protein interacting otherwise it was assigned as negative or non-
protein interacting. To discriminate these positive and negative pat-
terns, we applied various approaches and developed different SVM
based prediction models. All the models have been evaluated using
five-fold cross validation technique.
E
D

3.2. Performance of binary profile of patterns

In the past, various biological prediction methods have been devel-
oped using binary profile of patterns (BPP) approach [31,44]. Therefore,
we created binary profiles of positive and negative patterns of different
window sizes (see Material and methods section). These BPPs were
used as input for the SVM based machine learning. Different kernels
and parameters were optimized, but prediction performance was not
good. We achieved maximum 61.57% sensitivity, 54.89% specificity,
(positive) and non-interacting (negative) patterns.

p://dx.doi.org/10.1016/j.ygeno.2015.01.005

http://dx.doi.org/10.1016/j.ygeno.2015.01.005
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56.35% accuracy, 0.13 MCC and 0.622 AUC for window length of 25
(Fig. 3, Supplementary Table S1).

3.3. Performance of composition profile of patterns

The composition profile of patterns (CPP) can also be used for the
predictionmodel development, when residue/nucleotide based compo-
sitional differences present between the positive and negative patterns
[34,33].

3.3.1. Mono-nucleotide composition profile of patterns (MNCPP)
In the past, various prediction methods have been developed using

nucleotide/amino acid composition based approach [31,45]. We calcu-
lated nucleotide compositions of the protein-interacting (positive) and
non-interacting (negative) patterns and observed that there was no
U
N
C
O

R
R

Fig. 6. Tri-nucleotide composition of protein interacting
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nucleotide-wise preference for protein-interaction (Supplementary
Fig. S4). We used these positive and negative composition profiles as
input for the SVM based machine learning. As expected, all the perfor-
mances were very poor and achieved only 53.69% sensitivity, 52.51%
specificity, 52.76% accuracy, 0.05MCC and 0.564AUC forwindow length
of 21 (Supplementary Fig. S5, Supplementary Table S2).

3.3.2. Di-nucleotide composition profile of patterns (DNCPP)
Simple mono-nucleotides composition provides information of nu-

cleotide fraction in each pattern, whereas di-nucleotide composition
provides fraction information as well as the order and neighboring nu-
cleotide information. In DNCPP approach, we calculated di-nucleotide
composition of all positive and negative patterns (Fig. 4) and used
these DNCPP as SVM input. We achieved maximum 74.81% sensitivity,
76.72% specificity, 76.31% accuracy, 0.45 MCC and 0.832 AUC for win-
dow length of 21 (Fig. 5, Supplementary Table S3).

3.3.3. Tri-nucleotide composition profile of patterns (TNCPP)
Tri-nucleotide composition is more informative than di-nucleotide

composition because it provides information of two neighboring nucle-
otides. In TNCPP approach, we calculated tri-nucleotide composition of
all positive and negative patterns (Fig. 6). These TNCPPswere used as an
input for SVM based machine learning. We optimized different kernels
and parameters on all window sizes (3–25) and finally selected the
best performing prediction model. We achieved highest 83.92% sensi-
tivity, 84.82% specificity, 84.62% accuracy, 0.62 MCC and 0.889 AUC for
window length of 19 (Fig. 7, Supplementary Table S4).

We also tried different classifiers such as NaiveBayes,
NaiveBayesMultinomial, BayesNet, ComplementNaiveBayes,
MultilayerPerceptron, J48, SMO, RandomForest and SMO using
WEKA and achieved 0.07, 0.09, 0.10, 0.10, 0.16, 0.38, 0.46,
0.47 and 0.52 values of MCC respectively (Table 1). It means
SVMlight based models achieved highest 0.62 MCC for predicting
protein-interacting nucleotides in the RNA sequences.

4. Discussion

The RNA–protein interactions are involved in various biological pro-
cesses. In order to understand and investigate those interactions, it is
(positive) and non-interacting (negative) patterns.

p://dx.doi.org/10.1016/j.ygeno.2015.01.005
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important to identify interacting amino acids and nucleotides. There are
several prediction methods that have been developed to predict RNA-
interacting amino acids in the protein sequences but limited method
available for the prediction of interacting nucleotides in RNA sequence.
We created RNA-208 dataset of 208 RNA chains from PRIDB database
[29]. We calculated the RNA interaction preference of each amino acid
and found that Arg, Lys and Gly aremost abundant RNA-interacting nu-
cleotides. Thereafter, interaction preference of each nucleotide for every
amino acid was calculated and observed that there was no nucleotide-
wise preference present or very little preference present e.g. cytosine
slightly preferred to interact with arginine in comparison to the other
nucleotides (Fig. 1). It was interesting to analyze the length of
protein interacting nucleotide stretch and found that most of the
interacting stretches are 1–15 nucleotides long, where single, di
and tri-nucleotides were most abundant (Supplementary Fig. S1).

To develop a prediction tool, it is important to convert biological
knowledge/information into the machine-readable numerical forms.
In the past, several studies have used sliding window-based strategy
to develop residue/nucleotide level prediction [20,17]. We created slid-
ingwindowof different length and assignedwindowpattern as positive
if the central nucleotide of the window was protein interacting other-
wise assigned as negative. This assignment provided a total of 10,198
positive and 36,384 negative window patterns. The next challenge is
how to discriminate these positive and negative patterns efficiently.
The BPP is a widely used approach for this task [44,31]. This approach
provides position-wise nucleotide information of the window pattern.
Therefore, we applied BPP approach, but it achieved maximum 61.57%
U
N

Table 1
The prediction performance of different classifiers using TNCPP approach of 19-length
window size.

Name of classifier Sensitivity Specificity Accuracy MCC

NaiveBayes 52.47 56.35 55.50 0.07
NaiveBayesMultinomial 49.44 61.49 58.85 0.09
BayesNet 50.77 60.93 58.71 0.10
ComplementNaiveBayes 41.05 70.01 63.67 0.10
MultilayerPerceptron 54.20 64.57 62.30 0.16
J48 55.30 84.10 77.79 0.38
SMO 39.65 95.96 83.63 0.46
RandomForest 78.03 76.54 76.87 0.47
IBk 76.54 81.99 80.80 0.52
SVMlight 83.92 84.82 84.62 0.62
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sensitivity, 54.89% specificity, 56.35% accuracy, 0.13 MCC and 0.622
AUC for window length of 25 (Fig. 3, Supplementary Table S1). The
CPP approach has been also used in the past, where it was showed
that nucleotide/amino acid composition of positive and negative pat-
terns can also use to discriminate these patterns [34,33]. In the
MNCPP approach, performance decreased slightly compare to BPP and
achieved 53.69% sensitivity, 52.51% specificity, 52.76% accuracy, 0.05
MCC and 0.564 AUC for window length of 21 (Supplementary Fig. S5,
Supplementary Table S2). Performance increased significantly when
we applied DNCPP and achieved maximum 74.81% sensitivity, 76.72%
specificity, 76.31% accuracy, 0.45MCC and 0.832AUC forwindow length
of 21 (Fig. 5, Supplementary Table S3). Itmay be because therewere dif-
ferent nucleotides preferred in the positive and negative patterns. We
observed that AC, CA, GA andUUdi-nucleotide preferred in positive pat-
terns, whereas AA, CG, GC andGGpreferred in negative patterns (Fig. 4).
Finally, TNCPP achieved highest 83.92% sensitivity, 84.82% specificity,
84.62% accuracy, 0.62 MCC and 0.889 AUC for window length of 19
(Fig. 7, Supplementary Table S4). Here also tri-nucleotide wise prefer-
ences were present, where ACA, ACC, AGA, CAC, CCA, GAG, UGA and
UUU tri-nucleotides preferred in positive patterns, whereas AAG, AGG,
CCG, CGC, GCG, GGC, GGG, GGU, UAA, UGG and UUC preferred in nega-
tive patterns (Fig. 6).

In the present scenario, prediction of protein interacting nucleotides
is in the primitive stage.We tried various approaches and achieved rea-
sonable performance, but this problem requires more attention and in-
formation, in order to develop an efficient prediction model. The
present method has many limitations due to limited dataset availability
and criterion to determine protein interacting and non-interacting nu-
cleotides. We used 5.0 Å as a cutoff distance because in the past various
methods have been used in this criterion for selecting RNA-interacting
residues in proteins [30] but this is not solely a correct criterion. Recent-
ly, pseudo k-tuple nucleotide composition (PseKNC) based approach
also proposed for different nucleotide related problems [46,47] and
our approach can be extended in future works. Additionally, there are
sequence-independent bindings also present in the RNA–protein inter-
action; therefore, it is important to solve these issues in the future. We
hope that RNApin method will be useful for the RNA biologist in order
to identify protein interacting nucleotides in RNA sequences.
5. Conclusion

In this study, we tried various approaches for the prediction of PINs.
We optimized different window sizes, SVM parameters and kernels. Fi-
nally we found that tri-nucleotide wise compositional differences were
present between positive and negative patterns and TNCPP approach
was most efficient to discriminate PINs and non-PINs.
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RNApin web-server

We implemented SVM prediction model in a web-server called
RNApin. The RNApin is user-friendly and freely available from http://
crdd.osdd.net/raghava/rnapin/ web-address. We have provided our
dataset ‘RNA-208’ in the supplementary file 2 (RNA-208.txt) and also
RNA-1546 is accessible from our RNApin webserver (http://crdd.osdd.
net/raghava/rnapin/dataset.php).
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