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Abstract

Background: Diverse modeling approaches viz. neural networks and multiple regression have
been followed to date for disease prediction in plant populations. However, due to their inability
to predict value of unknown data points and longer training times, there is need for exploiting new
prediction softwares for better understanding of plant-pathogen-environment relationships.
Further, there is no online tool available which can help the plant researchers or farmers in timely
application of control measures. This paper introduces a new prediction approach based on
support vector machines for developing weather-based prediction models of plant diseases.

Results: Six significant weather variables were selected as predictor variables. Two series of
models (cross-location and cross-year) were developed and validated using a five-fold cross
validation procedure. For cross-year models, the conventional multiple regression (REG) approach
achieved an average correlation coefficient (r) of 0.50, which increased to 0.60 and percent mean
absolute error (%MAE) decreased from 65.42 to 52.24 when back-propagation neural network
(BPNN) was used. With generalized regression neural network (GRNN), the r increased to 0.70
and %MAE also improved to 46.30, which further increased to r = 0.77 and %MAE = 36.66 when
support vector machine (SVM) based method was used. Similarly, cross-location validation
achieved r = 0.48, 0.56 and 0.66 using REG, BPNN and GRNN respectively, with their
corresponding %MAE as 77.54, 66.11 and 58.26. The SVM-based method outperformed all the
three approaches by further increasing r to 0.74 with improvement in %MAE to 44.12. Overall, this
SVM-based prediction approach will open new vistas in the area of forecasting plant diseases of
various crops.

Conclusion: Our case study demonstrated that SVM is better than existing machine learning
techniques and conventional REG approaches in forecasting plant diseases. In this direction, we
have also developed a SVM-based web server for rice blast prediction, a first of its kind worldwide,
which can help the plant science community and farmers in their decision making process. The

server is freely available at http://www.imtech.res.in/raghava/rbpred!/.
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Background

Weather-based forecasting systems reduce the cost of pro-
duction by optimizing the timing and frequency of appli-
cation of control measures and ensures operator,
consumer and environmental safety by reducing chemical
usage. A major aim of many forecasting systems is to
reduce fungicide use, and accurate prediction is important
to synchronize the use of disease control measures to
avoid crop losses [1]. A prediction model based on the
relationship between environmental conditions at the
time of management and late-season disease severity
could be used to guide management decisions. Thus, if a
sound forewarning system is developed, the explosive
nature of the disease could be prevented by timely appli-
cation of the control measures. Various techniques of
computer modeling and simulation viz. machine learning
techniques like artificial neural networks and the conven-
tional multiple regression approaches are being used to
help synthesize and develop scientists' understanding of
this complex plant-pathogen-environment relationship.
The resultant models enable exploration of the factors
that govern disease epidemics and the design of control
systems that minimize yield losses. The same models have
potential to guide breeding programs and work to
develop strategies that will prolong the usefulness of dis-
ease-resistance genes. Thus, we undertook the present case
study on rice blast disease forecasting by following a new
prediction approach, support vector machine and com-
pared its performance with the existing artificial neural
networks-based and multiple regression-based prediction
approaches.

Rice (Oryza sativa L.) is the single most important food
crop for more than one-third of the world's population.
Of the various diseases limiting rice productivity, blast
disease caused by Pyricularia grisea Sacc. { Magnaporthe gri-
sea (Hebert) Barr.} continues to be an enigmatic problem
in several rice growing ecosystems of both tropical and
temperate regions of the world and is a serious constraint
in realizing the full yield potential of rice cultivars. It con-
tinues to be the most destructive disease of rice despite
decades of research towards its control. Weather has a very
important role to play in the appearance, multiplication
and spread of the blast fungus. Considerable efforts have
been directed towards developing blast-resistant cultivars,
but due to high variability in blast pathogen, most of the
resistant varieties frequently succumb to this disease.
Therefore, the most practical way to control blast epidem-
ics have been the use of fungicides. However, due to high
cost of chemicals as well as their hazardous effects, use of
fungicides is invariably uneconomic. Moreover, farmers
are sometimes forced to skip the actual date of fungicide
application due to lack of knowledge regarding the actual
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time of appearance of the disease. Therefore, for the judi-
cious use of fungicides, forewarning of blast is very impor-
tant.

Previous attempts to describe the relationship between
rice blast severity and environmental conditions have
been made in various countries through both the empiri-
cal and explanatory simulation models developed only
through the conventional regression analysis viz. in Japan
[2,3], Korea [4-6], China [7], Taiwan [8], India [9-11],
Thailand [12] and the Philippines [13,14]. However, very
limited use of these models have been implemented by
farmers to manage rice blast because of two plausible rea-
sons: firstly, growers/farmers tend to be risk-aversed and
are not properly convinced on the use of disease forecast-
ing tools, and secondly, the mathematical relationships
between the environmental conditions and the specific
stages of rice blast infection cycle are not fully understood.
This makes conventional modeling approaches such as
multiple regression difficult.

Various other attempts to establish a quantitative relation-
ship between weather and disease infection from field
studies have not always been successful. Davis et al. did
not find any obvious relationship between disease sever-
ity and weather, and infection could not be associated
with any specific sequence of weather events [15]. Using
multiple linear regression (REG) analysis, Chakraborty
and Billard showed that REG model was not equally effec-
tive in predicting infection events in the 2 years of their
field study in Australia [16]. Subsequently, another inde-
pendent study has shown that the REG model does not
adequately explain infection at a field site in Queensland,
Australia [17]. These studies indicate that, although the
REG models were able to explain disease development at
a particular field site for certain years, its ability to gener-
alize across field sites and years was poor. Diverse mode-
ling approaches have therefore, been followed for
advanced understanding (i.e. predictability) of phenom-
ena associated with disease in plant populations. Till date,
artificial neural networks (ANNs) have been reported to
be the good alternate to the conventional multiple regres-
sion techniques as ANNs are reputed to excel at extracting
sometimes subtle patterns from large multivariate data
sets without preconceived assumptions about model form
due to incompletely understood, possibly complex, rela-
tionships [18-23]. The next major advancement was a
feedback function of ANN that adjusted weights to mini-
mal error values; however, popularization of ANNs as a
distinct class of models occurred in the 1980s when the
activation threshold was replaced by a continuous func-
tion and a multilayer network took derivatives from a
backpropagation of errors to approximate the target out-
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put by nonlinear functions [24]. Another alternative to
back-propagation that has been widely used in regression
problems is the generalized regression neural network,
which involves one-pass learning algorithm with a highly
parallel structure that provides estimates of continuous
variables and converges to the underlying (linear or non-
linear) regression surface [25]. Both these backpropaga-
tion neural network (BPNN) and generalized regression
neural network (GRNN) architectures has remained a
mainstay among the models in the ANN family.

However, both these ANN architectures have there own
limitations. One disadvantage of backpropagation is that
it can take a large number of iterations to converge to the
desired solution. It also requires very long training time
and is subject to converging to local minima instead of
finding the global minimum error surface. For a mature
application, the long training time may be justified. To
guard against getting trapped in local minima, the BPNN
can be compared with the GRNN accuracy as it is fast
learning and have ability to convergence to the optimal
regression surface as the number of samples becomes very
large [25]. However, GRNN also requires substantial com-
putation to evaluate new points. It trains almost instantly,
but tends to be large and slow. GRNN also does not
extrapolate i.e. its inability in predicting the value of
unknown data points by projecting a function beyond the
range of known data points [25-27]. Thus, there is an
urgent need of exploiting the latest upcoming prediction
softwares for better and improved understanding of the
plant-pathogen-environment relationships.

This paper introduces a new prediction method based on
a powerful machine learning technique Support Vector
Machines (SVM) originally developed by Vapnik and co-
workers at Bell Laboratories as a very effective method for
general-purpose supervised predictions [28-30]. It has
been shown in the past that this machine learning tech-
nique is very effective in the classification of proteins par-
ticularly in discriminating membrane proteins [31],
prediction of subcellular localization [32-34], solvent
accessibility [35], CTL epitopes [36], binding peptides
[37], protein structures [38], protein-protein binding sites
[39] and gene expression level [40]. SVM provides an
alternative or complement to the present ANN and REG
based approaches for model development. The SVM
learns how to classify from a training set of feature vectors,
whose expected outputs are already known. The training
enables a binary classifying SVM to define a plane in the
feature space, which optimally separates the training vec-
tors of two classes. When a new feature vector is fed, its
class is predicted on the basis of which side of the plane it
maps. To the best of authors' knowledge, there is no
report of using support vector machines in understanding
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the relationship between disease severity and its associ-
ated environmental conditions.

Hence, the present case study was aimed to determine the
usefulness of SVM models over the existing artificial neu-
ral network and conventional multiple regression models
to predict rice blast severity based on prevailing weather
conditions both within and between the locations/years,
and to calculate the overall risk of rice blast infection at
these field sites using a set of weights from the trained
SVM models. For this, we used 5-year rice blast/weather
data collected from five different locations spread over the
district Kangra of Himachal Pradesh (India) as part of a
National Agricultural Technology Project (NATP) which
was implemented at CSK Himachal Pradesh Agricultural
University, Palampur, Himachal Pradesh (India). This
paper reports the first ever disease prediction models as
well as web-based server developed using SVM, world-
wide.

Results

Cross-location model development and validation

Within each year, cross-location models were developed
and validated separately with REG, BPNN, GRNN and
SVM approaches (Table 1). In the year 2000, when cross-
location multiple regression models were validated
against each other, the coefficient of determination (r2)
value went maximum up to 0.40 with its corresponding
percent mean absolute error (% MAE) value of 62.92
(location-II as test data); however, with BPNN-based vali-
dation, the r2 improved by about 21% to 0.61 with almost
36% improvement in its corresponding % MAE value
(26.60); which further increased to r2 = 0.79 with
improvement in its respective % MAE (25.81), when
GRNN-based validation approach was applied. When
SVM-based validation approach was performed, the r2
improved by about 9% to 0.88, with also 9% decrease in
its % MAE value (17.29). In 2001, the maximum 12 value
observed was 0.61 with 59.77% mean absolute error with
REG based validation (location-IV as test data), whereas
the r2 improved to 0.62 with improvement in its respec-
tive % MAE value also (57.34) with BPNN approach
which further increased by 17% to r2 = 0.79 with 24%
improvement in its corresponding % MAE (33.11) when
GRNN-based validation approach was followed. With
SVM, about 11% increase in coefficient of determination
(12 = 0.90) corresponded to about 9% improvement in
percent mean absolute error (%MAE = 24.16). In 2002,
with REG-based validation, maximum 12 reached up to
0.50 with its respective % MAE value as 110.72 (location-
IV as test data), whereas the 12 value went maximum up to
0.74 with drastic improvement in its respective % MAE
value (84.29) when validated with BPNN-based approach
(location-V as test data) which further improved to 12 =
0.87 and % MAE = 82.64 with GRNN-based validation
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approach. The 12 increased drastically to 0.98 with
improvement in its corresponding % MAE to 51.54 when
SVM-based validation approach was performed (location-
IV as test data). In 2003, maximum 12 reached up to 0.48
having corresponding % MAE value of 69.78 with REG
based validation (location-II as test data), however with
BPNN-based validation, the r?2 improved to 0.49 with
improvement in its % MAE (61.70) also. Maximum r2 and
% MAE achieved with GRNN was 0.76 and 49.57 which
was respectively about 27% and 12% better than BPNN
(location-III as test data). With SVM, the 12 slightly
increased to 0.77 with drastic improvement of about 30%
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in its corresponding % MAE to 19.76. Similarly in 2004,
the maximum r? value attained with REG based validation
was 0.46 with its corresponding % MAE value of 78.63
(location-1V as test data), whereas with BPNN-based vali-
dation, an 8% increase in 12 (0.52) corresponded to about
33% improvement in its respective % MAE value (45.20)
which with GRNN, again increased to 12 = 0.58 with
decrease in its corresponding % MAE (37.10). As observed
earlier, the SVM again outperformed all the three other
approaches with about 16% increase in r2to 0.74 as well
as improvement in its corresponding mean absolute error
to 31.67%.

Table I: Comparison of multiple regression (REG), backpropagation neural network (BPNN), generalized regression neural network
(GRNN) and support vector machine (SVM) based prediction accuracy of rice blast severity measured as correlation coefficient (r),
coefficient of determination (r2) and percent mean absolute error (%MAE) of the observed value for 'cross-location' models over

various years.

Year(s) Location(s) Multiple Regression Artificial Neural Network (ANN) Support Vector
(REG) Machine (SVM)
BPNN GRNN
Training Data Test Data r r2  %MAE r r2  %MAE r r2  %MAE r r2  %MAE
2000 LI, L-II, LA LAV L-v 062 038 7512 051 026 5194 062 038 3783 062 0.38 37.42
L-I, LI, LA, LV L-IV 059 035 9977 069 048 7275 060 036 4139 069 048 39.41
L-I, L-II, L-V, LIV L-1Nl 057 033 3920 060 036 4947 075 056 4035 084 0.71 23.71
L-l, L-V, LA, L-IV L-l 063 040 6292 078 0.1 2660 089 0.79 2581 094 088 17.29
L-V, L-II, L-lI, L-IV L-I 044 0.19 580l 048 023 5762 051 026 5562 054 029 50.88
2001 L-I, L-0I, L=, LIV L-v 039 0.I5 8927 066 044 59.17 095 09 9508 098 096 6640
L-I, LI, LA, LV LIV 078 061 5977 079 062 5734 089 079 3311 095 090 24.16
L-I, L-II, LV, L-IV L-1N -0.24 006 73.18 021 004 5945 041 0.17 5050 0.5 026 35.30
L-I, L-V, LA, LIV L-l 050 025 5235 045 020 5950 052 027 4887 0.63 040 4256
L-V, LA, LA, LAV L-I -027 007 11520 038 0.14 9666 034 0.12 9498 041 0.17 7622
2002 L, LI, LIV L-v 051 026 9475 086 074 8429 093 087 8264 082 0.67 36.09
L-l, LI, L-V L-IvV -0.71 050 11072 072 052 79.11 072 052 5787 099 098 51.54
L-l, LV, L-IV L-ll 061 037 76,15 064 041 6948 069 048 6763 081 0.66 4536
L-V, LI, L-IV L-I -0.15 002 10831 -034 0.12 14329 -030 0.09 12732 0.12 0.0l 95.39
2003 L-1, L1, LA, LAV L-v 046 021 6792 050 025 536l 063 040 4930 086 074 4293
L-I, LI, LA, LV LIV 0.14 0.02 749 046 021 6517 051 026 5929 086 0.74 41.80
L-I, L-II, LV, L-IV L-1N 053 028 6809 059 035 5859 087 076 4957 088 0.77 19.76
L-l, L-V, LA, L-IV L-l 069 048 6978 070 049 6170 072 052 5839 0.78 06l 53.17
L-V, L-II, L-lII, L-IV L-I 057 033 5305 065 042 5109 069 048 4985 070 049 49.18
2004 L, L-IL, LIV L-v 0.18 0.03 9055 063 040 618l 0.73 053 41.01 0.83 069 38.86
L-l, LI, L-V L-IV 068 046 7863 072 052 4520 076 058 37.10 086 0.74 31.67
L-l, LV, LIV L-ll 039 0.5 8998 0.0 0.0l 6518 044 0.19 5182 069 048 46.54
L-V, LA, L-IV L-I 047 022 5488 043 0.19 6934 067 045 6779 074 055 4070
where,
L — I = Location-I viz. Palampur (I3t date of transplanting; |15 days prior to normal transplanting)
L — Il = Location-ll viz. Palampur (2" date of transplanting; normal time of transplanting)
L — Il = Location-lll viz. Palampur (374 date of transplanting; 15 days after the normal transplanting)
L — IV = Location-IV viz. Rice Research Station, Malan (CSK HPAU)
L —V = Location-V viz. Farmers' fields, Pharer.
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Cross-year model development and validation

Within each location, cross-year models were also devel-
oped and validated. Here also, comparison between all
the four approaches followed was made on the basis of 2
and % MAE values (Table 2). All the locations showed
improvement in 12 values and decrease in percent mean
absolute error values when models developed with SVM
were validated against the test data as compared to the
REG, BPNN and GRNN-based validation approaches. At
location-I (Palampur-1st date of transplanting), when
within year cross validation was performed with REG, the
r2 went maximum up to 0.48 with the corresponding %
MAE value of 61.68 (year 2001 as test data), whereas with
BPNN approach, the r2 value improved to 0.50 and the %
MAE value improved to 59.73 which further increased to
12 = 0.52 with its respective % MAE = 59.17 when GRNN
was performed. The SVM-based validation approach
showed about 9% increase in r2 value (0.61) with about
10% simultaneous improvement in its % MAE (49.06). At
location-II (Palampur-1I"d date of transplanting), maxi-
mum 12 observed was 0.38 with its respective % MAE as
92.79 (2004 as test data) with REG approach, whereas the
BPNN-based validation achieved about 23% higher coef-
ficient of determination (2= 0.61) with about 48% simul-
taneous improvement in its corresponding % MAE also
(2000 as test data). With GRNN, the r2 showed drastic
increase of about 26% (0.87) with also improvement in
its % MAE to 40.15, however, when SVM was followed,
the 12 remained constant but the % MAE improved by
about 15% to 25.41 thereby again indicating the suprem-
acy of SVM over the other three approaches. At location-
III (Palampur-I11rd date of transplanting), with REG, max-
imum r2 was observed to be 0.38 (2000 as test data) with
a mean absolute error of 43.67%; however, the 12
increased to 0.46 with also improvement in % MAE
(36.30) with BPNN-based validation (2003 as test data).
The GRNN again improved the r2and % MAE to 0.69 and
33.38, respectively (2000 as test data). With SVM, the 12
increased by about 5% to 0.74 with also about 11%
improvement in its respective % MAE (22.18). At loca-
tion-1V (Rice Research Station, Malan), maximum r? value
went up to 0.79 with the % MAE value of 68.55 (2001 as
test data) with REG approach. With BPNN, the 12
remained constant but the % MAE showed about 3%
improvement (65.23). With GRNN-based validation, the
2 increased slightly by about 2% to 0.81, but the % MAE
improved drastically by about 35% (30.75). The 12 again
increased to 0.94 with improvement in its corresponding
% MAE t0 29.90 (2001 as test data). Similarly, at location-
V (farmers' fields, Pharer), the maximum 12 value
observed with REG was 0.61 with the corresponding %
MAE value as 72.13 (2001 as test data), whereas the 12
improved by about 13% to 0.74 with its corresponding %
MAE as 51.91, an error improvement of about 20% (2002
as test data) when validated with BPNN-based approach.
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The GRNN again proved better over REG and BPNN as the
2 increased by about 7% to 0.81 with improvement in its
respective % MAE value to 50.56 (2001 as test data). How-
ever, SVM again proved its supremacy over all the
approaches followed by achieving drastic increase of
about 15% (2000 as test data) in coefficient of determina-
tion (r2 = 0.96) as well as simultaneous improvement of
about 35% in its respective percent mean absolute error
value (15.23).

Average comparison of prediction accuracy

Overall, the 12 and percent mean absolute error showed
better improvement with SVM based validation tests as
compared to the REG, BPNN and GRNN approaches
(Table 3). In case of 'cross-location' models, maximum
coefficient of determination (r2 = 0.33) was observed for
the year 2000 as compared to the other years performance
with the % MAE value of 67.01 with REG approach which
improved to 12 = 0.39 and % MAE = 51.68 when BPNN-
based validation approach was followed. With GRNN, the
2 showed an increase of about 8% in average 12 value
(0.47) with about 11% improvement in its respective
average % MAE (40.20). The SVM-based validation
approach again revealed an increase of 8% in average 12
value to 0.55 and simultaneous improvement in its %
MAE also by about 7% (33.74). Similar improvement in
average 12 and % MAE values was also observed in 'cross-
year' models validation. The maximum average coeffi-
cient of determination (12 = 0.49) was observed for loca-
tion-IV (Rice Research Station, Malan) showing 68.29%
mean absolute error with REG-based validation approach
which increased by 6% to 12 = 0.55 and % MAE also
improved by about 17% (50.85) with BPNN-based vali-
dation. The average 12 further increased by 8% to 0.63 and
the % MAE also improved by 9% to 41.44 with GRNN.
However, the SVM-based validation again increased the
average 12 to 0.73, a jump of about 10% with simultane-
ous improvement by about 7% in its respective % MAE
also (34.90).

In order to have overall comparison of all the four
approaches followed, the overall 12 value averaged over all
the years for 'cross-location' models with REG was
observed to be 0.27 with its corresponding % MAE as
77.54. When BPNN was applied, the overall 12 increased
by 8% to 0.35 and % MAE (66.11) also improved by
about 11%. The GRNN further increased the r2to 0.47, an
increase of 12% with 8% improvement in its respective %
MAE (58.26). However, the SVM gave the best reachable
average 12 value of 0.59, again an increase by 12% with its
corresponding % MAE value of 44.12, which also
improved drastically by about 14%. For 'cross-year' mod-
els, the average r2 was found to be 0.30 with its respective
% MAE of 65.42, which showed an increase of 10% (12 =
0.40) with BPNN with simultaneous 13% improvement
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Table 2: Comparison of multiple regression (REG), backpropagation neural network (BPNN), generalized regression neural network
(GRNN) and support vector machine (SVM) based prediction accuracy of rice blast severity measured as correlation coefficient (r),
coefficient of determination (r2) and percent mean absolute error (%MAE) of observed value for 'cross-year' models over various

locations.
Location(s) Year (s) Multiple Regression Artificial Neural Network (ANN) Support Vector
(REG) Machine (SVM)
BPNN GRNN

Training Test Data r r2  %MAE r r2  %MAE r r2  %MAE r r2  %MAE
Data

L-1 2000,01,02,03 2004 0.56 0.3l 5685 059 035 56.19 066 044 5072 067 045 46.23
2001,02,03,04 2000 036 0.13 6037 050 025 5890 0.63 040 4086 075 0.56 38.07
2000,02,03,04 2001 069 048 6168 071 050 5973 072 052 59.17 078 0.6l 49.06
2000,01,03,04 2002 0.17 003 8570 0.17 0.03 77.18 035 0.12 7597 054 029 6735
2000,01,02,04 2003 030 009 6519 058 034 5359 062 038 5292 070 049 39.14

L-1l 2000,01,02,03 2004 062 038 9279 0.1l 0.0l 72.18 049 024 7058 0.66 044 4352
2001,02,03,04 2000 058 034 4504 078 0.6l 4429 093 087 40.15 093 087 254l
2000,02,03,04 2001 023 005 7756 042 0.18 73.12 053 028 6249 053 028 5032
2000,01,03,04 2002 048 023 51.76 056 032 4809 076 0.58 41.03 079 062 40.13
2000,01,02,04 2003 -0.10 0.0l 99.31 020 0.04 60.62 022 005 568l 0.60 0.36  45.54

L-1ll 2000,01 2003 050 025 5272 068 046 3630 082 067 2997 084 0.7I 20.27
2001,03 2000 062 038 4367 060 036 4062 083 069 3338 086 074 2218
2000,03 2001 0.14 002 7193 058 034 3830 063 040 3593 065 042 3510

L-IV 2000,01,02,03 2004 066 044 5699 062 038 51.72 0.78 0.6l 4962 084 0.71 47.49
2001,02,03,04 2000 055 030 5303 068 046 4599 0.72 052 433] 0.77 0.59 41.90
2000,02,03,04 2001 089 079 6855 089 0.79 6523 090 08I 30,75 097 094 2990
2000,01,03,04 2002 084 0.71 91.18 090 0.8l 2393 094 088 2095 096 0.92 14.79
2000,01,02,04 2003 048 023 7171 056 0.31 6739 058 034 6260 066 044 4039

L-V 2000,01,02,03 2004 038 0.14 7813 0.64 04I 6255 066 044 5682 0.80 064 5022
2001,02,03,04 2000 0.67 045 5571 0.71 0.51 3899 073 053 3209 098 0.96 15.23
2000,02,03,04 2001 0.78 0.6l 72.13 083 0.69 52,07 090 08I 5056 093 087 21.18
2000,01,03,04 2002 053 028 5644 086 0.74 5191 087 076 4630 087 0.76 3528
2000,01,02,04 2003 061 037 5491 061 037 5026 062 038 48.17 0.65 042 46.17

where,

L — I = Location-I viz. Palampur (I3t date of transplanting; |15 days prior to normal transplanting)

L — Il = Location-ll viz. Palampur (2" date of transplanting; normal time of transplanting)

L — Il = Location-lll viz. Palampur (374 date of transplanting; 15 days after the normal transplanting)

L — IV = Location-IV viz. Rice Research Station, Malan (CSK HPAU)
L —V = Location-V viz. Farmers' fields, Pharer.

in its % MAE (52.24) also. Further, the GRNN-based vali-
dation increased the average r? (0.51) by 11% and
improved % MAE by about 6% (46.30). The SVM-based
validation approach again proved its supremacy over the
other three approaches by increasing the r2 further to 0.61,
an increase by 10%. The respective % MAE (36.66) also
improved by about 10%. The 'cross-year' models showed
slightly higher coefficient of determination and least per-
cent mean absolute error values with all the four
approaches followed in this study indicating that 'cross-
year' predictions are better with respect to their accuracy
and confidence level as compared to the 'cross-location'
predictions.

Best predictor variables

For 'cross-location' validation, the best SVM model was
observed during 2001 with location-V as test data (farm-
ers' fields, Pharer) with the highest correlation coefficient
of 0.98 and percent mean absolute error of 66.40. The per-
formance of this model was again tested by excluding
each weather variable at a time by repeated training and
testing. The results revealed that rainfall was most influen-
tial in predicting the disease followed by rainy days/week,
minimum relative humidity, maximum relative humidity,
minimum temperature and maximum temperature
(Table 4). Similarly, for 'cross-year' models, the best SVM
model was observed at location-V (farmers' fields, Pharer)
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Table 3: Overall comparison of multiple regression (REG), backpropagation neural network (BPNN), generalized regression neural
network (GRNN) and support vector machine (SVM) based prediction accuracy of rice blast severity measured as average correlation
coefficient (r), coefficient of determination (r2) and percent mean absolute error (¥MAE) of observed value for 'cross-location' and

'cross-year' models.

Model(s) Multiple Regression (REG) Atrtificial Neural Network (ANN) Support Vector Machine (SVM)
BPNN GRNN
r r2 %MAE r r2  %MAE r r2  %MAE r r2 %MAE
Cross-location models
2000 0.57 0.33 67.01 061 039 51.68 0.67 047 40.20 0.73 0.55 33.74
2001 0.44 0.23 77.95 050 029 6642 0.62 045 645I 0.70 0.54 48.93
2002 0.50 0.29 97.48 064 045 9404 0.66 049 83.87 0.69 0.58 57.09
2003 0.48 0.26 66.76 058 034 5803 0.68 048 5328 0.82 0.67 41.37
2004 0.43 0.22 78.51 047 028 6038 0.65 044 4943 0.78 0.62 39.44
Average 0.48 0.27 77.54 0.56 0.35 66.11 0.66 0.47 58.26 0.74 0.59 44.12
Cross-year models
Location-| 0.42 0.21 65.96 051 029 6l.12 0.60 037 5593 0.69 0.48 47.97
Location-II 0.40 0.20 73.29 041 023 59.66 0.59 040 5421 0.70 0.51 40.98
Location-llI 0.42 0.22 56.11 062 039 3841 076 059 33.10 0.78 0.62 25.85
Location-IV 0.68 0.49 68.29 073 055 50.85 0.78 0.63 41.44 0.85 0.73 34.90
Location-V 0.59 0.37 63.46 073 054 51.I5 0.76 058 46.79 0.84 0.72 33.62
Average 0.50 0.30 65.42 0.60 0.40 52.24 0.70 0.51 46.30 0.77 0.61 36.66
where,
L — | = Location-| viz. Palampur (15t date of transplanting; |5 days prior to normal transplanting)
L — Il = Location-ll viz. Palampur (2" date of transplanting; normal time of transplanting)
L — Il = Location-lll viz. Palampur (374 date of transplanting; 15 days after the normal transplanting)

L — IV = Location-IV viz. Rice Research Station, Malan (CSK HPAU)
L — V = Location-V viz. Farmers' fields, Pharer.

with the year 2000 as test data with the highest correlation
coefficient of 0.98 and least percent mean absolute error
of 15.23. The rainfall was again found to be the best pre-
dictor variable. However, the second most influential var-
iable was found to be minimum relative humidity
followed by maximum relative humidity, minimum tem-
perature, maximum temperature and rainy days/week.
Overall, the rainfall was observed to be the best predictor
among the weather variables followed by relative humid-
ity and rainy days/week. The temperature was found to
have least effect on disease development.

Finally, we selected the best prediction models for each of
the four approaches followed viz. REG, BPNN, GRNN and
SVM based on the maximum coefficient of determination
and least percent mean absolute error values. Then, we
plotted the observed and predicted mean disease severi-
ties to compare their prediction accuracy both for 'cross-
year' as well as 'cross-location' models. Within the cross-
year models, best prediction accuracy was observed for

location-IV (Rice Research Station, Malan) and for loca-
tion-V (farmers' fields, Pharer). Furthermore, best testing
was observed with the year 2000 data at all the locations
except for location-IV (RRS, Malan) where best validation
was observed with 2001 data. In case of cross-location
models, best prediction accuracy was observed for 2003
and 2004 years data (Figure 1, 2).

Description of Web Server

A web-based server, RB-Pred, was developed to predict the
severity percent of leaf blast. RB-Pred is beautifully
designed and is a user-friendly and easy-to-use web server.
Users just have to feed the recorded weather variables pre-
vailing in their areas viz. temperature (maximum), tem-
perature (minimum), relative humidity (maximum),
relative humidity (minimum), rainfall and rainy days/
week data in the 'submit' form of the server (Figure 3).
Based on the maximum correlation coefficient and least
percent mean absolute error, we have selected the two best
models each for 'cross-location' as well as for 'cross-year'
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Table 4: Identification of most influential predictor variables for the best 'cross-location’ and 'cross-year' SVM models.

Weather variable(s) excluded

Best SVM 'cross-year' model Correlation
coefficient (r)

Best SVM ‘cross-location' model
Correlation coefficient (r)

None excluded. All 6 variables (T, .0 Tmins 0.979 0.982
RH, ..o RH.in, Rainfall, RD/week) included

Rainfall 0.789 0.949
Rainy days/week 0.974 0.966
Relative Humidity (minimum) 0.866 0.982
Relative Humidity (maximum) 0.953 0.984
Temperature (minimum) 0.968 0.983
Temperature (maximum) 0.973 0.984

predictions. We have saved the model files of these best
models in the server. When the user feed the weather var-
iables, the server classifies them according to these model
files and generates the predicted leaf blast severity (%)
separately for cross-location as well as cross-year predic-
tions. As the cross-year correlation was observed more
than the cross-location validation, the predicted blast
severity seems to be more accurate for 'cross-year' predic-
tions as compared to the 'cross-location' predictions and
thus, the default submit parameter was set on 'cross-year'
models.

Although, the server is working quite well and will be ben-
eficial to the plant pathologists and farmers; we are work-
ing towards the in-season real time weather based disease
predictions where the web server will itself train the
weather variables fed by the users and will ultimately,
forecast the real time disease severity for their respective
areas.

Discussion

This work is the first initiative of applying support vector
machine tools to developing weather-based prediction
models for plant diseases as the usefulness of SVM over
the existing neural networks (BPNN and GRNN) and the
conventional multiple regression approaches in predict-
ing plant diseases have not been reported yet from any
part of the world. While previous research, particularly on
rice blast prediction, has largely been focused on the con-
ventional multiple regression approaches, no serious
effort with new prediction softwares in improving the pre-
diction accuracy of these models have been employed.
There is an urgent need to manage rice blast by better
understanding of the mathematical relationships between
the environmental conditions and its specific stages of
infection cycle. The rationale behind the use of early- and
mid-season information to predict late-season rice blast
severity lies in the fact that this disease is strongly influ-
enced by environmental conditions favourable for initial
inoculum production and initial infection. Thus, it was
necessary to use other empirical approaches in an effort to
understand the relationship between the environment

and disease (rice blast) development. The results of the
present study by using SVM-based regression approach
have led to a better description of this relationship
between the environmental conditions and disease level
which could be useful for disease management.

Though, within the neural networks, the generalized
regression neural network outperformed the backpropa-
gation neural networks by about 20-30%. This is due to
the fact that GRNN have greater understanding of model
results (i.e. repeatable derivation of coefficients), less reli-
ance on parameter optimization, and have minimum
probability of being trapped in local minima during error
gradient descent. Similar results of improvement in pre-
diction accuracy through GRNN as compared to the
BPNN have also been reported by Chtioui et al. for mois-
ture prediction from simple micrometeorological data
[27], Wolf and Francl [20,21] for prediction of tan spot
and stagonospora blotch infection periods, and Francl
[22] for modeling wetness duration. However, one major
significant contribution of this study has been the
improvement of 12 and % MAE values with SVM as com-
pared to the existing BPNN and GRNN and the conven-
tional REG approaches. We demonstrated this by
comparing all the four approaches in best possible combi-
nations i.e. training and testing of both cross-location as
well as cross-year prediction models. All the locations/
years' data showed improved 12 and least % MAE values
with SVM based validation procedures indicating that
SVM holds better supremacy over the other three mode-
ling techniques. The advantages of using SVM over the
other methods lies in the fact that SVMs are known to be
robust when one has a sparsely filled high dimensional
dataset as shown in some of the earlier studies [41-43]. It
maps data into a high dimensional space via kernels
where a linear decision boundary is constructed. Such
boundary corresponds to a non-linear one in the input
space [28,44]. Some other most remarkable advantages of
SVMs are the absence of local minima, the sparseness of
the solution, and the use of the kernel-induced feature
spaces [42]. The flexibility allowed by this modeling
approach makes it possible to fit non-linear relationships
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Observed and predicted mean disease severity based comparison of prediction accuracy of multiple regression (REG), back-
propagation neural network (BPNN), generalized regression neural network (GRNN) and support vector machine (SVM)
approaches for 'cross-location models' during year(s) 2000 (A); 2001 (B); 2002 (C); 2003 (D); and during 2004 (E).
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Figure 2
Observed and predicted mean disease severity based comparison of prediction accuracy of multiple regression (REG), back-
propagation neural network (BPNN), generalized regression neural network (GRNN) and support vector machine (SVM)

approaches for 'cross-year models' at Palampur-1 (early transplanting) (A); at Palampur-Il (normal transplanting) (B); at Palam-
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Figure 3
An overview of submission form for online prediction of rice blast severity with 'RB-Pred' web server.

and complex interactions between variables without
requiring complex transformations of variables and trial-
and-error searches for interactions as required in neural
networks. For a system like leaf blast of rice for which the
relationships between the environment and disease devel-
opment are not fully understood with conventional statis-
tical techniques, SVM serves as an excellent tool for
developing prediction models. Previous attempts to pre-
dict the severity of this disease using REG approaches
yielded results inferior to those being reported in this
study using SVM.

While previous research has largely used data from the
same site [10,12,14,45], the work reported here demon-
strated that data from some or all field sites could be used
for cross-sites prediction with equal accuracy as that with
the within-site prediction models. All the REG, BPNN,
GRNN and SVM models were used to predict rice leaf blast

severity for locations that were never used in model train-
ing/development. Training and testing sites were geo-
graphically distant and were spread over district Kangra of
Himachal Pradesh (India). Both cross-year as well as
cross-location wise training and testing of prediction
models was done in order to compare their results for effi-
cient validation across the two procedures. In general, the
cross-year models showed slightly higher coefficient of
determination and lower percent mean absolute error val-
ues as compared to the cross-location models during all
the validation approaches followed in this study viz. REG,
BPNN, GRNN and SVM. Moreover, when the observed
and predicted disease severity values were plotted for both
the models, the cross-year models showed less deviation
between the observed and predicted curves as compared
to the cross-location models (Figure 1, 2). This indicated
that the 'cross-year' models (models validated across the
years at same location) are better in terms of their predic-
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tion accuracy to the 'cross-location' models (models vali-
dated across the locations in the same year). In other
words, we can say that location-specific models have bet-
ter predictability and higher confidence of prediction.

Moreover, despite the rigorous and stringent validation
procedures followed in this study for all the four
approaches, the multi-location data showed more robust-
ness and usefulness over a broad range of field sites. This
important contribution also demonstrates the obvious
underlying principle that the basic quantitative relation-
ship between rice blast development and weather does
not change from site to site, given that an inoculum
source of a virulent pathogen and a susceptible host is
present. However, using data only from locations with
similar characteristics may be useful but these models
essentially become location-specific and lose application
over a broad range of locations. That's why the plotted
observed and predicted disease severities showed more
deviation in some cases for 'cross-location' models even
with SVM as compared to the 'cross-year' models (Figure
1, 2). Moreover, these prediction techniques are based on
various mathematical functions which try to predict the
biological functions as accurately as they can, but it is dif-
ficult to predict the actual values with hundred per cent
accuracy as the environmental factor, which is highly var-
iable, always play a major role in disease predictions.
However, our main concern in the present investigation
was to evaluate the status of currently available
approaches for predicting plant diseases in comparison to
the latest prediction techniques that are still unexploited
like SVM in this case. It was observed that SVM performed
better than BPNN, GRNN and REG on the dataset used in
this study. It does not indicate that in general, SVM is bet-
ter than neural networks or the other methods. Our anal-
ysis on the present dataset revealed better prediction
accuracy with SVM over all the years and locations as com-
pared to the REG, BPNN and GRNN-based validation
approaches which is an important and significant contri-
bution of this study.

Conclusion

The application of SVM models for plant disease predic-
tion as revealed from the present case study on rice blast
prediction makes them a useful tool for future forecasting
models, and combining aspects of SVM and other estab-
lished statistical tools may offer a more flexible option for
the future. Experimental approaches, linked with dynamic
models, are more adequate approaches allowing a better
understanding of the dynamics of the systems. To date,
only multiple regression and neural networks are being
used extensively for forecasting plant diseases in various
parts of the world. The higher predictive accuracy by latest
machine learning techniques like SVM as demonstrated in
the present study will generate more efficient prediction

http://www.biomedcentral.com/1471-2105/7/485

models which will help explain the factors that govern dis-
ease epidemics, and help in the design of control systems
that minimize yield losses. Rice blast disease causes
between 11% and 30% crop losses annually. This repre-
sents a loss of 157 million tonnes of rice [46]. Progression
of the disease varies in different locations and years,
depending mainly on weather conditions. Therefore, fore-
casting of blast epidemics is necessary if growers are to
prevent severe yield losses caused by the disease [47].
Growers many want to know when the disease will start,
how severe the epidemic will be, whether fungicides
should be applied, and if so, when. For this, scientists are
using computer modeling and simulation to synthesize
and understand this complex pathosystem. However,
there is no online disease prediction tool available that
have potential to guide the farmers and researchers to
develop various strategies for efficient control of plant dis-
eases by timely forecasting of disease occurrence. 'RB-
Pred' web-based server, which is freely available, is an ini-
tiative in this direction for forecasting leaf blast severity
based on the weather variables which may help the farm-
ers and plant pathologists in their decision making proc-
ess. Based on the maximum r2and least % MAE values, the
best prediction models developed with these four
approaches followed in this study are being selected and a
practical management program (web-based server) for
rice blast is being developed at this centre using these
models. Requiring in-season weather data as input, this
server will directly serve to assess the risk of disease (rice
blast) epidemics and recommending timely application
of fungicides. Thus, the present web server could play an
important tool in integrated rice blast management sys-
tem for direct application to plant pathologists, academi-
cians and farmers which will ultimately have direct
economic impact in terms of (i) reduction in expenses to
develop new fungicides, (ii) development of target-site
specific and environment-friendly fungicides, and (iii)
increase in savings by reducing fungicide application.

Methods

Data set

Data on weather and rice leaf blast severity were obtained
from one year historical data for the year 2000 and from
a NATP project entitled "Development of weather based
forewarning systems for crop pests and diseases" which
was implemented in the department of plant pathology,
CSK Himachal Pradesh Agricultural University, Palampur
from 2001 to 2004. During this period (one year histori-
cal and four years of NATP project), five different loca-
tions were selected viz. department of plant pathology
experimental farm, CSK Himachal Pradesh Agricultural
University, Palampur with three dates of sowing i.e. 15
days early to normal sowing (Location-I), normal sowing
(Location-II), 15 days after the normal sowing (Location-
IIT); Rice Research Station, Malan (Location-IV) and at
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farmers' fields, Pharer (Location-V), in order to generate
epidemics of different severity and to represent as many of
the various combinations of variables likely to influence
the development of leaf blast as possible. The field exper-
iments were conducted by sowing a blast-susceptible
commercial variety, Himalaya 2216 at these five locations
with a plot size of 300 m2 for each sowing with a spacing
of 15 x 15 cm. Transplanting of local varieties at location-
V was done in the first fortnight of July. Observations were
recorded in 25 points of 1 m2 each marked at random. In
each 1 m?, 10 randomly selected hills were tagged and
observations on leaf blast were recorded at regular inter-
vals as per the Standard Evaluation System of Interna-
tional Rice Research Institute (IRRI), Philippines.

Data on meteorological variables such as maximum and
minimum temperature, maximum and minimum relative
humidity, rainfall and rainy days per week were recorded
daily with Automatic Micro Weather Station (UNIDATA,
Australia) at Palampur and with thermo-hygrographs at
Rice Research Station, Malan and farmers' fields at Pharer.
Weekly averages of these weather variables were calcu-
lated for correlation studies, to determine their role in the
development of rice blast epidemic.

Model development and evaluation

(i) Multiple regression (REG)

The REG models were developed according to the general
multiple regression equation:

Y =a+b, X, +b,X, 4., +b, X,
where, a = intercept, b, = slope of line (the partial regres-
sion coefficient value), and X, = independent variable.

In this equation, the regression coefficients (or B coeffi-
cients) represent the independent contributions of each
independent variable to the prediction of the dependent
variable. Another way to express this fact is to say that, for
example, variable X is correlated with the Y variable, after
controlling for all other independent variables. SPSS soft-
ware (SPSS Inc., Chicago, IL) was used to perform multi-
ple regression analysis to develop the disease prediction
models, where the leaf blast severity was used as the
dependent variable and the weekly average of various
weather variables 1 week prior to disease assessment viz.
maximum temperature (X;), minimum temperature (X,),
maximum relative humidity (X;), minimum relative
humidity (X,), rainfall (X5) and rainy days per week (X)
were used as independent variables.

(ii) Artificial neural network (ANN)

ANN applications in the agricultural sciences have been
researched for a wide range of classification, optimization
and prediction problems. There are several types of ANN
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employing different types of architectures. The two broad
architectures of ANN, feed-forward backpropagation neu-
ral network (BPNN) and the generalized regression neural
network (GRNN) being widely used in regression based
prediction problems are briefly discussed.

Feed-forward backpropagation neural network (BPNN)

As described by De Wolf and Francl [20,21] and Francl
[22], a feed-forward BPNN generally consists of nodes or
processing elements arranged in at least three layers
(input, hidden and output). Within each layer, the nodes
contain (user-defined) mathematical functions (activa-
tion functions) used to process the data before passing
them on to the nodes in the adjacent layer. Each input var-
iable is fed into the network via a separate node in the
input layer. The nodes in the input layer are connected to
nodes in hidden layer, and the nodes in the hidden layer
are connected to nodes in the output layer by way of
weights. Weights are analogous to coefficients in regres-
sion modeling. Information is passed (fed) through the
network from the input layer to the output layer (forward)
via the hidden layer and the connection weights, hence
the term feed-forward. Following further processing in the
output layer, network-estimated outputs are generated
and compared with actual outputs, and errors are calcu-
lated (based on the difference between the actual and net-
work outputs). The errors then are fed (propagated)
backward (from output layer to input layer) through the
network (error back-propagation), adjusting the connec-
tion weights so as to minimize the difference between the
estimated and the actual outputs. The predictors and
responses are presented to the network repeatedly (train-
ing) and, after each passage through the network, weights
are adjusted. Through this iterative process, the network
"learns" the relationship between the predictor and
response variables and, when presented with a new set of
inputs (validation), it is capable of predicting the out-
come based on this relationship. BPNN models were
developed by implementing Stuttgart Neural Network
Simulator, SNNS version 4.2 [48].

Generalized regression neural network (GRNN)

General regression neural networks, a second type of neu-
ral network developed by Specht, do not require the opti-
mization of multiple parameters that is required in BPNN
[25]. It has a radial basis layer and a special linear layer
which is similar to the radial basis network, but has a
slightly different second layer. In GRNN, each set of input
observations, I; to I;, is associated one-to-one with an
intermediate node, forming a pattern layer. The GRNN
models estimate appropriate model coefficients with a
single pass of the data used in model development which
assign a non-parametric probability density function, in
this case a Gaussian kernel, with width s, for each sample
of independent and dependent variables. An appropriate
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value for s is determined empirically based on mean
square error between observed and estimated dependent
variables. A joint probability estimate is converted to a
conditional mean of dependent variables given the sam-
ple of independent variables, and the predicted value of
dependent variables for future independent variables is
assigned the most probable value given data used to
develop the model. The GRNN models were developed
using the MATLAB (The MathWorks Inc., Natick, MA)
software.

(iii) Support Vector Machine (SVM)

SVMs are universal approximators based on statistical
learning and optimization theory which supports both
regression and classification tasks and can handle multi-
ple, continuous and categorical variables. To construct an
optimal hyperplane, SVM employees an iterative training
algorithm, which is used to minimize an error function.
For the application of SVM, the complete theory can be
found in Vapnik's monographs [29,30]. However, during
this investigation, our main goal was to compare the per-
formance of REG, BPNN and GRNN with SVM-based
regression approaches to estimate the functional depend-
ence of the dependent variable Y on a set of independent
variables X. Therefore, we briefly discuss here the sum-
mary of SVM (regression).

Support Vector Regression (SVR)

SVM can be applied not only to classification problems
but also to the case of regression [49]. Still it contains all
the main features that characterize maximum margin
algorithm: a non-linear function is leaned by linear learn-
ing machine mapping into high-dimensional kernel
induced feature space [50]. In a regression SVM, we esti-
mate the functional dependence of the dependent varia-
ble Y on a set of independent variables X. It assumes, like
other regression problems, that the relationship between
the independent and dependent variables is given by a
deterministic function f plus the addition of some addi-
tive noise. The task is then to find a functional form for f
that can correctly predict new cases that the SVM has not
been presented with before. This can be achieved by train-
ing the SVM model on a sample set, i.e. training set, a
process that involves, like classification and the sequential
optimization of an error function. All other additional
information regarding error function(s) and kernels used
in SVM have been described in the supplementary mate-
rial (see Additional file 1). In the present investigation,
the public domain software, SVM_light was used, which
implements SVM [51].

Cross Validation

The standard test for measuring the predictive accuracy we
used was a Cross Validation (CV) test for all the REG,
BPNN, GRNN and SVM approaches. CV measures the per-

http://www.biomedcentral.com/1471-2105/7/485

formance of the prediction system in a self-consistent way
by systematically leaving out a few datasets during the
training process and testing the trained prediction system
against those left-out datasets. Compared to the test on
independent dataset, CV has less bias and better predictive
and generalization power. The predictive ability of the
models generated from all the approaches was tested by
performing the cross validation test at all the five locations
under study. Furthermore, the CV test was performed
both between the locations as well as between the years,
so as to check whether location-wise prediction is more
accurate or the year-wise prediction is more efficient.
Firstly, each location within a particular year was dropped
in turn and the daily severity class of the dropped location
was predicted using models developed from the remain-
ing four locations. These were named as "cross-location
models". Similarly, the analysis was performed for cross-
year validation i.e. within a location, each year was
dropped in rotation and the daily severity class of leaf
blast of the dropped year was predicted using models
developed from the remaining four years data. These were
termed as "cross-year models". We briefly discuss here the
validation procedures followed for the REG, BPNN,
GRNN and SVM-based models separately.

(i) Multiple regression models validation

Each case was defined as an observation with a unique
combination of year, location and values for predictor
variables. For cross-location models, a random sample by
combining data of four locations was used for performing
the multiple regression analysis and the data for remain-
ing fifth location was used for testing (validation). This
was done five times by dropping each location at a time.
Similar procedure was followed for cross-year models val-
idation by dropping each year data at a time and perform-
ing multiple regression on combined sample of other four
years data. Thus, for validation, the independent weather
variables viz. maximum temperature (X, ), minimum tem-
perature (X,), maximum relative humidity (X;), mini-
mum relative humidity (X,), rainfall (Xs) and rainy days
per week (X,) of the remaining test dataset were fed into

the above REG equation and the predicted disease severity

values ( Y ) were calculated at 3-day interval for the whole
crop season at Palampur (location - I, II, III) and at
weekly intervals for Rice Research Station, Malan (loca-
tion - IV) and farmers' fields, Pharer (location - V). Then,
we calculated the correlation coefficient (r) between the
observed and predicted disease severity values. Actual pre-
diction accuracy of these REG models was thus, deter-
mined on the basis of coefficient of determination (r2)
and percent mean absolute error (% MAE) of the actual
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values. The additional details regarding formulae adopted
for calculating r, 12 and % MAE values can be found in the
supplementary material (see Additional file 1).

(i) BPNN, GRNN and SVM models validation

For all these three approaches, similar procedure was fol-
lowed for sampling the data according to cross-validation
approach as done for REG-based validation. A random
sample of combined four years/locations was used to
train the network and the remaining fifth year/location
data for testing (validation). In this way, the predictors
and responses were presented to the network repeatedly
(training) and, after each passage through the network,
weights were adjusted. Through this iterative process, the
network "learns" the relationship between the predictor
and response variables and, when presented with a new
set of inputs (validation), it is capable of predicting the
outcome based on this relationship. The iterations were
continued for generating prediction models until the best
model was found on the basis of maximum correlation
coefficient between the observed and predicted disease
severities. Training was stopped and the network was
saved on the best test set; that is, when the error (differ-
ence between actual and predicted severity) for the test set
was minimized. Separate sets of models were developed
for each set of input variables at all the five locations both
within cross-location and cross-year models. These valida-
tion cases were then used to assess the overall perform-
ance of the models by using the correlation coefficient
values between the predicted and observed disease sever-
ity which were analyzed for determining the r2 and %
MAE of the actual value as the final measures of prediction
accuracy.

The prediction models which showed highest r2 with the
least % MAE were adjudged the best prediction models for
each of the four approaches followed. All other additional
information on data preprocessing such as scaling or nor-
malization, learning rules, weights adjustment etc. can be
found in the supplementary material (see Additional file

1).

Identification of best predictor variables

Based on the maximum correlation coefficient and least
percent mean absolute error values, the best SVM-based
models were selected for 'cross-location' as well as 'cross-
year' models. The performance of these models was again
validated through training and testing by excluding one
weather variable at a time in order to identify the most
influential weather variable(s) in the SVM model. During
validation, where least correlation coefficient was found,
the corresponding excluded variable was declared as the
most influential predictor variable in the model. Simi-
larly, by excluding each variable at a time, the decrease in
correlation coefficient was judged and the series of best

http://www.biomedcentral.com/1471-2105/7/485

predictors was identified in decreasing order accordingly
for both the 'cross-location' and 'cross-year' models.

List of abbreviations used

REG, Multiple regression; ANN, Artificial neural network;
BPNN, Back-propagation neural network; GRNN, Gener-
alized regression neural network; SVM, Support vector
machine; SVR, Support vector regression; RBF, Radial
basis function; CV, Cross validation; %MAE, Percent
mean absolute error; NATP, National Agricultural Tech-
nology Project.
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