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SVM based prediction of RNA-binding
proteins using binding residues and
evolutionary information
Manish Kumara, M. Michael Gromihab and Gajendra P. S. Raghavac*

RNA-binding proteins (RBPs) play crucial role in transcription and gene-regulation. This paper describes a support
vector machine (SVM) based method for discriminating and classifying RNA-binding and non-binding proteins using
sequence features. With the threshold of 30% interacting residues, RNA-binding amino acid prediction method
PPRINT achieved the Matthews correlation coefficient (MCC) of 0.32. BLAST and PSI-BLAST identified RBPs with the
coverage of 32.63 and 33.16%, respectively, at the e-value of 1e-4. The SVM models developed with amino acid,
dipeptide and four-part amino acid compositions showed the MCC of 0.60, 0.46, and 0.53, respectively. This is the first
study in which evolutionary information in form of position specific scoring matrix (PSSM) profile has been
successfully used for predicting RBPs. We achieved the maximum MCC of 0.62 using SVM model based on PSSM
called PSSM-400. Finally, we developed different hybrid approaches and achieved maximum MCC of 0.66. We also
developed a method for predicting three subclasses of RNA binding proteins (e.g., rRNA, tRNA, mRNA binding
proteins). The performance of the method was also evaluated on an independent dataset of 69 RBPs and 100
non-RBPs (NBPs). An additional benchmarkingwas also performed using gene ontology (GO) based annotation. Based
on the hybrid approach a web-server RNApred has been developed for predicting RNA binding proteins from amino
acid sequences (http://www.imtech.res.in/raghava/rnapred/). Copyright � 2010 John Wiley & Sons, Ltd.

Supporting information can be found in the online version of this paper.
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INTRODUCTION

RNA participates in several essential and diverse functions of cell.
It is a constituent part of ribosome (Moore, 1998), spliceosome
(Luhrmann et al., 1990) and also reported to have catalytic activity
(Scott and Klug, 1996). In most cases, interaction of RNA with
protein is the common phenomena of RNA functions. Proteins
tend to interact with RNA mainly at the secondary structure
elements, such as stem-loops and bulges to form the complex
(Nagai, 1996). Besides, non-Watson-Crick base pairing also plays a
critical role in interaction (Steitz, 1999). RNA recognition by
proteins is primarily mediated by certain classes of RNA-binding
domains and motifs that are divided into two main classes on
the basis of RNA recognition mode: (i) groove binding and
(ii) b-sheet binding. In the former, interaction occurs through
binding of a-helix or loop with groove of RNA helix whereas in
later, residues in b-sheets interact with unpaired RNA bases
(Draper, 1999). In spite of the apparent functional importance,
protein–RNA interaction has attracted lesser attention than
protein–DNA interaction. This has been evidenced with the
keyword search, ‘‘protein–DNA complex’’ and ‘‘protein–RNA
complex’’ in PDB (Berman et al., 2000). Out of approximately
54 000 structures deposited, about 966 and 384 structures have
been retrieved for DNA and RNA complexes, respectively.
The most common method to identify the class of unknown

proteins is searching of structurally or sequentially similar pro-
teins. Similarity-searching based methods are limited by the
absence of experimentally annotated homologous proteins in

database. Hence it is important to develop computational tools
to identify RNA-binding proteins using amino acid sequence
alone. In past, attempts have been made to predict RNA-binding
proteins using amino acid composition coupled with charge,
hydrophobicity, and accessible surface area of residues (Cai and
Lin, 2003). Han et al (2004) developed a SVM based method using
three types of descriptors to describe the global composition of
each protein, (i) composition: percent compositions of amino
acids of a particular property (such as hydrophobicity), (ii) transi-
tion: percent frequency with which amino acids of a particular
property followed by amino acids of a different property, and (iii)
distribution: amino acids of a particular property within the first
25, 50, 75, and 100% of the protein (Han et al., 2004). Another
sequence-based method is developed by Yu et al. (2006) that
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predicts rRNA, RNA-, and DNA-binding proteins. They used
the three types of global composition descriptors (composition,
transition, and distribution), earlier used by Han et al (2004), along
with the physicochemical properties of proteins (hydrophobicity,
predicted secondary structure, predicted solvent accessibility,
normalized Van der Waals volume, polarity, and polarizability) as
input for SVM. Using the jack-knife test they achieved 83.98%,
77.51%, and 71.64% accuracy of prediction for rRNA-, RNA-, and
DNA-binding proteins, respectively. In order to show the consi-
stency of prediction, they also carried out the self-consistency
test (SVM was trained and tested with the same data set) of
the SVM models and observed an average accuracy of 92.84%,
83.21%, and 74.37% for rRNA-, RNA-, and DNA-binding proteins,
respectively. Recently, Shazman and Mandel-Gutfreund devel-
oped a method based on structural properties of RBPs (Shazman
and Mandel-Gutfreund, 2008). Despite the availability of several
methods, identification of RNA-binding proteins using sequence
information with high accuracy is still a major challenge.
In the present study, a systematic attempt has been made to

develop models for predicting RBPs with high accuracy using
only sequence-based information. We have evaluated the
performance of similarity search methods BLAST and PSI-BLAST
as well as the method developed for predicting RNA-binding
residues, PPRINT (Kumar et al., 2007a), to identify the RBPs with
specific thresholds. We have observed that although PPRINT
achieved very high specificity, the sensitivity was low. Hence, SVM
modules were developed using different composition forms
(single amino acid, dipeptide, and four part composition) and
PSSM profile. We also evaluated the performance of hybrid
methods developed using different combinations. Among diff-
erent types of RNAs, mRNA, rRNA, and tRNA constitute a major
fraction. In all the three types of RBPs, no exclusive RNA-binding
motif is present. In several cases samemotif (such as the KHmotif
or the zinc finger motif ) was found in proteins that binds to
different class of RNA (Lunde et al., 2007). Hence, we also
developed a sub-classification method to differentiate between
different classes of RBPs using multi-class SVM approach.

MATERIALS AND METHODS

Datasets

Main dataset

Yu et al (2006) have created a dataset of sequences obtained
from Swiss-Prot. It has 88 rRNA, 377 RNA, and 1153 DNA-binding
protein sequences in addition to 17 779 sequences that do not
belong to either class (negative dataset). Yu et al. generated
this non-redundant dataset with the sequence identity of less
than 25% (using CD-HIT (Li et al., 2001) and PISCES (Wang and
Dunbrack, 2003)) and removed ambiguous proteins, such as
proteins having more than 6000 or less than 50 amino acid
residues, or having irregular amino acids (e.g., ‘X’ and ‘Z’) (Yu
et al., 2006). We used this dataset for developing different
models described in this paper, which is called as main dataset
henceforth. In other words the main dataset was a subset of
Yu’s dataset, having 377 RBPs, and equal number of randomly
selected non-binding proteins (NBPs) from negative dataset.
Among the 377 RBPs 64 binds to mRNA, 82 to rRNA, 23 to tRNA,
and 208 either binds to more than one class of RNAs or specific
class of binding information is not available (for details see
Table S1).

RNA-binding proteins sub-classification dataset

RNA-binding proteins can be sub-classified into different
categories such as, rRNA-, tRNA-, mRNA- snRNA, snoRNA-,
miRNA-, and siRNA-binding proteins. Hence, it is pertinent to
develop a method that can further sub-classify the predicted
RNA-binding proteins into a potential sub-class. In the proposed
work, we have confined ourselves with only three classes of RBPs
namely rRNA-, tRNA-, and mRNA-binding proteins. In their work,
Yu et al (2006) have compiled three classes of proteins (rRNA-,
RNA-, and DNA-binding proteins and we used the 88
rRNA-binding proteins for sub-classification. The remaining
two classes of proteins (tRNA- and mRNA-binding proteins)
were retrieved from the Swiss-Prot database. We got a total of 413
and 235mRNA- and tRNA-binding proteins, respectively from
Swiss-Prot. After removing proteins having less than 50 residues
and more than 6000 amino acids, we created the final dataset
with less than 25% sequence identity using PISCES web-server
(Wang and Dunbrack, 2003). Finally, we got 83 tRNA- and
64mRNA-binding proteins.

Independent dataset

We used two different independent datasets to evaluate the real
life efficiency of our method.
RNAiset1: We have randomly selected 100 Swiss-Prot seq-

uences that do not interact with DNA or RNA. In addition, 107
RNA-binding protein chains were added from protein-RNA com-
plexes of PDB. Originally both sets of sequences were compiled
by Wang and Brown to evaluate their DNA/RNA binding residue
prediction web-server BindN (Wang and Brown, 2006). We noti-
ced that out of 107 RNA-binding protein chains 38 were present
in the dataset used to develop PPRINT. We removed these 38
common sequences. Hence the final RNAiset1 dataset has 69
RNA-binding protein chains.
RNAiset2: The main purpose for developing the present

method is to use it for prediction of RBPs in different available
proteomes. In order to show the real life efficiency we used GO
annotation (Ashburner et al., 2000) as benchmark. We created a
new independent dataset having 100 RBPs and 1000 NBPs. The
pfam2go section of GO database (http://www.geneontology.org/
external2go/pfam2go) contains mapping of each Pfam domain
to the GO terms. It means pfam2go can give information about
the function of Pfam domains. Firstly, we collected all Pfam
domains that contain GO term having RNA-binding property.
Then from UniProt database (http://www.uniprot.org/) we coll-
ected protein sequences that have any one of the RNA- binding
Pfam domains (collected in the previous step). We randomly
selected 100 proteins having RNA-binding Pfam domains, taking
care that no domain was present more than once. For making the
non-RNA-binding protein dataset we collected 1000 sequences
from UniProt that do not have Pfam domains found in RBPs. Both
these classes of sequences are given as supplementary data.

Performance measures

In the present work we used standard parameters like sensitivity,
specificity, accuracy, and MCC (Matthews, 1975) for evaluating
the models. The detailed descriptions of these parameters have
been described in our earlier publication (Kumar et al., 2006). In
addition threshold independent measure receiver operating
characteristic (ROC) and area under curve (AUC) were also used to
evaluate the performance of models.
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RNA-binding amino acid prediction

Prediction of RNA-binding amino acids was done using our
earlier developed method PPRINT (Kumar et al., 2007a). Each
protein was submitted to PPRINT web-server (http://www.imte-
ch.res.in/raghava/pprint) and fraction of RNA-binding amino
acids was calculated by dividing the number of binding residues
with total amino acid residues in protein. In order to avoid the
false positive RNA-binding residues prediction, a higher threshold
(0.5) was used, instead of the default threshold �0.2.

Five-fold cross validation

All models except RNA-binding residue prediction based
modules developed during this study were evaluated using
five-fold cross validation, in which binding as well as non-binding
proteins were randomly divided into five sets. Each set contain
one fifth of RNA-binding and one fifth of non-RNA-binding
proteins. All the models developed in this study were trained on
four sets and tested on remaining fifth set. This process is
repeated five times so that each set is used once for testing. The
final performance of a model is average performance of five sets.
During the development of sub-classification SVM models we

considered the corresponding proteins as positive example
and other class of RBPs as negative example. Besides this, equal
number of NBPs (Negative data of main dataset) was also
added. It means SVMmodels formRNA-, tRNA-, and rRNA-binding
protein predictions were developed on unbalanced dataset. For
example SVM model for rRNA-binding protein was created using
a dataset of 88 rRNA-binding protein, 64mRNA-, 83 tRNA-
binding, and 88 NBPs. Similarly SVM model for tRNA-binding
protein predictionwas developed on 83 tRNA-binding proteins and
235 non-tRNA-binding proteins (83 NBP, 64mRNA-binding, 88
rRNA-binding proteins). Further, mRNA-binding protein prediction
model was trained on 235 negative (64 NBP, 88 rRNA-, and 83
tRNA-binding proteins) and 64mRNA-binding proteins.

BLAST and PSI-BLAST

In the present study, BLAST (Altschul et al., 1990) and PSI-BLAST
(Altschul et al., 1997) based searching was done against a
database of RBPs and NBPs. The PSI-BLAST was used in addition
to BLAST, as it is capable to search remotely homologues proteins.
In this study PSI-BLAST search was done for three iterations at a
cut-off e-value of 0.001. In order to distinguish this searching from
general BLASTand PSI-BLAST searching, the database contains only
the sequences of main dataset. Proteins of test set were searched
against the corresponding training set and depending on the class
of the top-most hit, the search performance was calculated.

Sequence feature and vector encoding

Residue compositions

In this study, SVM based models have been developed using (i)
percent amino acid composition in which each protein was
represented by a vector of dimension 20; (ii) percent dipeptide
composition that represented each sequence by a vector of
dimension 400; (iii) four-parts composition where sequence was
divided into four equal non-overlapping parts and composition
of each part was calculated separately. Thus, a protein was
represented by a vector of dimension 80 (20� 4) in case of
four-part composition. The detailed descriptions of amino acid

and dipeptide compositions have been described in our earlier
work (Kumar et al., 2006).

Evolutionary information

In past, evolutionary information in the form of PSSM was used
in secondary structure prediction (Jones, 1999), turns (Kaur and
Raghava, 2003a; Kaur and Raghava, 2003b; Kaur and Raghava,
2004a; Kaur and Raghava, 2004b), and b-hairpin prediction
(Kumar et al., 2005). PSSM based prediction methods perform
better than single sequence-based methods because it also
provides the patterns in sequence variability and the location
of insertions and deletions along with information of amino
acid sequence. In this study, first time we have used evolutionary
information in the form of PSSM for predicting RBPs. We
performed three iterations of PSI-BLAST search against NCBI ‘nr’
(non-redundant) protein database, which is a non-redundant
collection of GenBank CDS translations, PDB, Swiss-Prot, PIR, and
PRF. The e-value threshold for inclusion of sequences during
profile construction was 0.001. All other parameters of PSI-BLAST
search were default parameters. The PSSM contains occurrence
probability of all 20 amino acids at each residue position of
protein sequence. This means evolutionary information in PSSM
is presented by a matrix of dimension L*21 (L rows and 21
columns) for a protein of length L. Here 20 columns represent
occurrence/substitution of 20 naturally occurring amino acids
and remaining one column for insertion/deletion. One of
the major limitations of machine learning algorithms is the
requirement of fixed length input patterns. In proteins, the
number of amino acids (L) is not the same; hence we can not
use PSI-BLAST PSSM directly to train SVM. In order to convert
variable size L� 21 dimension PSSM into fixed size 400 dimen-
sion input vector (PSSM-400) strategy used in DNA-binding
proteins prediction method DNA binder was adopted (Kumar
et al., 2007b). In short it was done in following steps: (a) all
values of PSSM were normalized in range of 0–1 using formula
(Value-minimum)/(maximum-minimum); (b) All rows belonging
to the same amino acid were pooled together to form 20matrices
of size NAA� 20, where NAA is the number of amino acid of type
AA; (c) the summation of each column in new matrices (each
daughter matrix) will produce a 20 dimensional vector. Since
there were 20 matrices we get 20� 20¼ 400 dimension vector.

Support vector machine

SVM is a machine-learning method based on the structural risk
minimization principle from statistical learning theory. It takes a
set of feature vectors, along with their real output as input and
use them for training of model. After training, learned model
can be used for prediction of unknown examples. A detailed
description of SVM is available in Vapnik (Vapnik, 1995). In this
work, the SVM training has been carried out by optimization of
various kernel function parameters and the value of the
regularization parameter C. We have used a freely downloadable
package SVMlight available at http://svmlight.joachims.org/to
implement SVM in this work.

Hybrid approach

We also developed methods which combines two or more than
two approaches called hybrid methods. We combined residue
based prediction method PPRINT and composition based SVM
model called as hybrid modules.
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Hybrid1 Module: In this module, first RNA binding residues
are predicted using PPRINT, if the percentage of predicted
residues in a protein is more than the specific threshold then the
protein is assigned as a RNA-binding protein. In case percentage
of predicted residues in the protein is less than threshold then
PSSM-400 based SVMmodel is used to predict whether protein is
RNA-binding or not.
Hybrid2 Module: In this module, if a protein have percent of

binding residue (predicted using PPRINT) more than upper
threshold then protein is assigned as RBP; if a protein have
percent of binding residue less than lower threshold then protein
is assigned as NBP; otherwise SVM model is used to predict
whether protein is RBP or NBP.
Hybrid3 Module: In this module PSSM-400 and similarity

based approaches (e.g., BLAST, PSI-BLAST) are combined. The
proteins in the test sets were searched as query against a
database containing the proteins of corresponding training sets.
BLAST/PSI-BLAST hits were given the priority over PSSM-400; SVM
predictions were used only for proteins where BLAST/PSI-BLAST
showed insignificant hits.
Hybrid4 Module: In this module, similarity search methods

(BLASTand PSI-BLAST) are combinedwith Hybrid2module. Firstly
RNA-binding residue prediction method PPRINT was used to
predict the RNA-binding residues in the query sequence. On the
basis of percentage of RNA-binding residue in the query protein,
it was predicted as RBP or NBP. In case the fraction of predicted
residues lie between the lower and upper threshold limits then
BLAST/PSI-BLAST search was used in five-fold cross validation
mode. On the basis of class of top hit, the class of query protein
was decided. In case BLAST/PSI-BLAST search also did not find any
hit then SVM was used for prediction. In short first priority was
given to PPRINT prediction, second to similarity search methods,
and third or lowest to SVM. In Hybrid4 method, lower and upper
threshold limits were kept at 3 and 30%, respectively, while
BLAST/PSI-BLAST we used an e-value of 1e-4.

RESULTS

RNA-binding residue prediction based approach

Recently, we developed a method PPRINT for predicting RNA-
binding residues (Kumar et al., 2007a). Using PPRINT, RNA-binding
residues were predicted for all the proteins in the main dataset and
RBPs were assigned with different thresholds. In this approach if
fraction of predicted RNA-interacting residues in a protein is greater
than a certain threshold then it was predicted as a RNA-binding
protein. As shown in Table 1, with the threshold limit of 30% we
predicted all RBPs with 100% specificity. However, the sensitivity
was very low (18.83%). This result showed that the interacting
residue prediction approach could discriminate RNA binding and
non-binding proteins with very high specificity but low sensitivity.

Prediction by similarity search methods

We evaluated the performance of similarity search approaches
using BLAST and PSI-BLAST on main dataset using five-fold cross
validation approach. Proteins of each test set were searched
against the corresponding training set sequences. As shown in
Table 2, at e-value 1e-4, BLAST got 129 hits out of total 377
RNA-binding proteins, among which 123 were correct (coverage
32.63%). On the other hand, 371 hits were obtained at e-value 10,
among which only 288 were correct. PSI-BLAST should be able to

identify even remotely homologous proteins because it searches
the sequence database iteratively and builds the scoring matrix
on the basis of sequences found in previous searches. But in this
study minor difference was observed in performance of BLAST
and PSI-BLAST. At e-value of 1e-4 and 10, the coverage of
PSI-BLAST search was 33.16 and 77.45%, respectively (Table 2).

Amino acid composition analysis

It has been shown that the amino acid composition can be used
to classify proteins of different folding types and develop pre-
diction methods. Hence we analyzed the amino acid compo-
sitions of RNA-binding and non-binding proteins of main dataset.
We observed that the charged residues (Glu, Lys and Arg)
were more abundant in RNA-binding proteins (Figure 1). It was
expected because of the importance of electrostatic interactions
in protein–RNA interactions. The higher level of Glu can also be
explained due to the negative charged nature of RNA. Inter-
estingly, no significant difference was found in composition of
other negative charged amino acid Asp. In non-binding proteins
Cys, Phe, Ile, Leu, Trp, and Tyr were found to be over-represented.
We also carried out the calculation for statistical significance of
amino acid composition of Glu, Lys, Arg, Cys, Phe, Ile, Leu, Trp, and
Tyr at significance value p< 0.0001. We found that the differences
in composition of all amino acid residues are statistically
significant.

Composition based SVM models

The results obtained with similarity search methods and binding
site prediction approach clearly showed that they are not capable
of discriminating RNA-binding proteins at high accuracy. Hence,
we developed SVM models that require only amino acid
sequence for prediction. Using amino acid composition we
achieved the accuracy of 79.97% and MCC of 0.60. The MCC
decreased to 0.46 (accuracy¼ 73.09%) with dipeptide compo-
sition. We obtained the MCC of 0.53 (accuracy¼ 76.53%) using
four-part amino acid composition, which is lower than the
performance of simple amino acid composition based SVM
model. We also calculated the AUC statistics of different SVM
models. The AUC values of amino acid, dipeptide, and 4-parts
split amino acid compositions were 0.85, 0.80 and 0.83,
respectively. The detailed performance of all composition based
SVM modules are shown in Table 3 and S2.

Table 1. Performance of PPRINT to identify RNA-binding
proteins at different thresholds. The % cut-off implies the
minimum fraction of residues predicted as binding

% Cut-off Sensitivity Specificity Accuracy MCC

5 77.72 71.09 74.40 0.49
10 53.85 91.25 72.55 0.49
15 36.87 96.82 66.84 0.42
20 28.12 99.47 63.79 0.39
25 24.93 99.73 62.33 0.37
30 18.83 100.00 59.42 0.32
35 14.32 100.00 57.16 0.28
40 10.61 100.00 55.31 0.24
45 6.90 100.00 53.45 0.19
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Evolutionary information based SVM model

To further enhance the prediction performance, evolutionary
information encoded in PSSM was used as input to SVM. PSSM
was generated by PSI-BLAST search against ‘‘NCBI nr protein
database’’ and normalized into 400 dimension input vector. We

achieved the maximum MCC of 0.62 with an accuracy of 80.90%
using PSSM (Table 3 and S2). The ROC plot (Figure 2) and AUC
(Table 3) also show that PSSM based SVM model performs better
than composition based SVM models.

Hybrid approach

As shown in Table 1, PPRINT was very effective in discriminating
NBPs. In order to take advantage of high specificity obtained with
PPRINT; we combined it with PSSM-400 SVM model. In the hybrid
method if 30% residues of a protein were predicted as RNA
interacting residues then protein was predicted as RBP. For
remaining proteins PSSM-400 model was used to predict type of
protein. Using this approach (Hybrid1) the MCC marginally
improved to 0.63 (Table 4). Since RNA-binding residue prediction
approach was very efficient in discriminating the NBPs we also
imposed a lower threshold limit henceforth referred as Hybrid2
method. In the Hybrid2 if the % of predicted RNA binding
residues in a protein is less than lower threshold limit (e.g., 1, 2, 3,
4, 5 in Table 5) it was predicted as non-binding and if it is above
the upper limit (30%) it is predicted as binding. For the proteins
having percent of predicted residue in between lower and upper
limits we used PSSM-400 SVM model for predicting type of

Figure 1. Amino acid composition of RNA-binding and non-binding
proteins in main dataset.

Table 2. Performance of similarity search methods BLAST and PSI-BLAST on RNA-binding proteins in main dataset at different
e-value thresholds

E-value

RNA binding proteins Non RNA binding proteins

TH CH Prob Cov TH CH Prob Cov

Summary of BLAST search
1e-4 129 123 95.35 32.63 16 11 68.75 2.92
1e-3 137 129 94.16 34.22 19 11 57.89 2.92
1e-2 163 151 92.64 40.05 27 16 59.26 4.24
0.1 200 182 91.00 48.28 49 25 51.02 6.63
1 281 238 84.70 63.13 161 81 50.31 21.49
10 371 288 77.63 76.39 358 168 46.93 44.56

Summary of PSI-BLAST search
1e-4 131 125 95.42 33.16 16 11 68.75 2.92
1e-3 146 138 94.52 36.60 20 11 55.00 2.92
1e-2 165 153 92.72 40.58 28 16 57.14 4.24
0.1 203 184 90.64 48.81 55 28 50.91 7.43
1 284 242 85.21 64.19 197 94 47.72 24.93
10 375 292 77.87 77.45 371 176 47.44 46.68

TH¼ Total number of hits obtained during similarity searching; CH¼Number of proteins whose top hit is same as class of query protein;
Prob¼ Probability of correct prediction; Cov¼Coverage of searching [(CH/total number of searches)� 100]. Total number of proteins
searched is 377 RBPs and 377 NBPs.

Table 3. SVM results on main dataset

Input Thr. Sens. (%) Spec. (%) Accu. (%) MCC SVM_light learning parameters AUC

AAC 0.4 80.63 79.31 79.97 0.60 J¼ 2; t¼ 2; g¼ 0.001; c¼ 75 0.85
DP 0.0 74.03 72.15 73.09 0.46 J¼ 1; t¼ 1; d¼ 2 0.80
4-AAC 0.0 76.67 76.38 76.53 0.53 J¼ 1; t¼ 1; d¼ 4 0.83
PSSM-400 �0.2 81.95 79.84 80.90 0.62 J¼ 1; t¼ 1; d¼ 1; c¼ 0.01 0.87

4-ACC¼ 4 part amino acid composition; DP¼dipeptide composition; PSSM-400¼ PSSM normalized in the form of 400 input vectors;
Thr¼ Threshold; Sens¼ Sensitivity; Spec¼ Specificity; Accu¼Accuracy; MCC¼Matthews correlation coefficient; AUC¼Area under curve.

J. Mol. Recognit. (2010) Copyright � 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jmr

RNA BINDING PROTEINS PREDICTION

5



proteins. As shown in Table 5 we achieved the maximum MCC
of 0.66 with lower limit 3%. With this approach the specificity
increased considerably to 88%.
As shown in Table 2 when RBPs are searched with five fold

cross validation mode at e-value of 1e-4, BLAST has picked up
123 RBPs correctly out of 129 retrieved hits. On the other hand
PSI-BLAST identified 125 RBPs correctly out of 131 total hits.
These results showed that the coverage of similarity search
methods is poor although the probability of finding a correct
homologue is very high (�95%). Hence we combined the

similarity search methods BLAST and PSI-BLAST with PSSM-400
SVM model (henceforth referred as Hybrid3). In contrary to our
expectation we did not find improvement in MCC with Hybrid3
(Table S3).
We have taken into the advantage of other methods, (i) highly

specific prediction of RNA-binding residue based approach, (ii)
high probability of correct prediction of similarity searchmethods
and (iii) generalized SVM method, and developed a hybrid
method by combining all these three methods (henceforth
referred as Hybrid4). With Hybrid4 we achieved the maximum
MCC of 0.66 (Table S4), which was equal to the performance of
Hybrid2 method.

Classification of RNA-binding proteins into different classes

In addition, we have developed a method to distinguish different
classes of RNA (tRNA, rRNA, or mRNA)-binding proteins using
multiclass SVM approach. We built three new SVM classifiers,
which were used to discriminate rRNA-binding proteins,
mRNA-binding proteins, and tRNA-binding proteins. As shown
above, PSSM-400 model perform better than other composi-
tion-based SVM models and hence we developed PSSM-400
based model for sub-classification. Using tRNA-binding proteins
as positive example we achieved the accuracy of 76.70% and
MCC of 0.49 (Table 6). The accuracy and MCC increased to 79.28%
and 0.50, when mRNA-binding proteins were considered as
positive example. The accuracy and MCC for classifying
rRNA-binding proteins are 90.14% and 0.77, respectively. The
AUC values of tRNA, mRNA, and rRNA-binding protein prediction
SVM model were 0.82, 0.83, and 0.96, respectively. The ROC plots
of these also show high performance (Figure S1).
All the three SVM models for predicting different class of

RNA-binding proteins were developed using the same dataset.
The only difference between them is that they were developed
for predicting only a subset of RBPs. Hence it is pertinent to
analyze the rate of false positive predictions with different classes
of RBPs. As shown in Table 7, when SVM model developed on
tRNA-binding proteins was used for predicting mRNA- and rRNA-
binding proteins our method correctly predicted 47 and 83
proteins, respectively, as non-tRNA-binding proteins. Similarly,
the SVM model trained for predicting mRNA-binding proteins
correctly excluded 80.72% and 94.32% of tRNA- and rRNA-
binding proteins, respectively. SVM model developed for predi-
cting rRNA-binding proteins correctly identified 91.57 and

Figure 2. ROC plot analysis of SVM prediction with different inputs on

main dataset.

Table 4. The performance of combined approach (Hybrid1),
prediction of RNA binding residues and PSSM-400 SVMmodel

PSSM-400
SVM
threshold Sensitivity Specificity Accuracy MCC

�1.0 93.90 48.01 70.95 0.47
�0.9 92.31 52.25 72.28 0.49
�0.8 90.98 56.50 73.74 0.51
�0.7 89.12 61.80 75.46 0.53
�0.6 88.59 66.05 77.32 0.56
�0.5 87.80 69.76 78.78 0.59
�0.4 86.47 73.47 79.97 0.60
�0.3 84.88 76.66 80.77 0.62
�0.2 83.29 79.84 81.56 0.63
�0.1 80.64 81.43 81.03 0.62
0.0 77.45 83.02 80.24 0.61
0.1 75.07 84.62 79.84 0.60
0.2 72.68 87.80 80.24 0.61
0.3 69.23 89.92 79.58 0.60
0.4 66.58 91.25 78.91 0.60
0.5 62.86 92.31 77.59 0.58
0.6 60.48 92.84 76.66 0.56
0.7 58.62 93.63 76.13 0.56
0.8 56.50 93.90 75.20 0.54
0.9 55.44 94.96 75.20 0.55
1.0 53.05 95.76 74.40 0.54

In the hybrid method, if predicted RNA-interacting residues in a
protein wasmore than or equal to 30% of total amino acids, then it
was predicted as RBP. Otherwise PSSM-400 based SVM model was
used for prediction.

Table 5. The performance of hybrid method (Hybrid2) with
different minimum % threshold for non-RNA binding proteins
prediction. The threshold for RBPs prediction was 30% of total
amino acids was predicted as RNA-interacting by PPRINT

% Minimum
cut-off Sensitivity Specificity Accuracy MCC

1 82.23 82.49 82.36 0.65
2 79.84 84.88 82.36 0.65
3 77.72 88.06 82.89 0.66
4 73.21 89.92 81.56 0.64
5 70.56 91.78 81.17 0.64
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90.63% non rRNA-binding proteins (tRNA-binding and mRNA-
binding proteins, respectively).

Evaluation on independent dataset

N-fold (e.g., five-fold) cross validation is a standard practice used
for evaluating prediction methods, where set of proteins used
for training and testing are mutually exclusive. But it has been
observed in past that performance of N-fold cross validation
technique is biased with optimization (Bhasin and Raghava,
2004b). Thus, it is important to evaluate a newly developed
method on an independent dataset (proteins not used for
developing the method). We evaluated the performance of our
best SVMmodel as well as hybrid approaches on an independent
dataset (RNAiset1). Among different hybrid methods we selected
Hybrid2 for independent testing since it showed the maximum
accuracy along with Hybrid4. As shown in Table 8, at default
threshold PSSM-400 SVM model predicted with MCC and
accuracy of 0.45 and 73.37%, respectively. When Hybrid1 method
was applied on independent dataset the sensitivity increased to
73.91% and MCC to 0.49. With Hyrid2 method there was minor
decrease in sensitivity but specificity increased by 3% with MCC
of 0.51. These results clearly show that our prediction model
performs well in real life situation and the method is reliable. We
named the Hybrid2 method as RNApred, which was the final
prediction method for RBPs.

Independent evaluation of RNApred on GO annotation

Recent developments in high-throughput techniques resulted in
accumulation of large amount of functional data. Gene ontology
consortium (www.geneontology.org) is an attempt to system-
atically organize different forms of data in a hierarchical manner
(Ashburner et al., 2000). GO represents the function of each gene

using three main ontologies—molecular function, biological
process, and cellular component. In this work, we evaluated the
performance of RNApred on independent dataset (RNAiset2) that
had 100 RNA-binding and 1000 non-binding proteins. At default
thresholds of Hybrid2 module of RNApred, it correctly predicted
73 proteins as RNA-binding and 833 proteins as non-binding (see
supplementary file 2 for detail).

Comparison with existing methods

A direct comparison with all existing methods is not appropriate
because of the differences in the data sets, descriptors, and
classification methods. But it is important to compare a newly
developed method with existing methods in order to examine
the novelty of new method. To the best of our knowledge four
methods were reported in the literature for predicting RNA-
binding proteins. Cai and Lin developed a rRNA-, RNA-, and
DNA-binding proteins prediction method using 10 fold cross-
validation (Cai and Lin, 2003). They achieved 96.84 and 85.74%
accuracy in discriminating rRNA- and RNA-binding proteins,
respectively. In a first glance it appears that the accuracy is higher
than our method, but it does not definitely means that their
method is superior to ours. There were two main reasons behind
the high accuracy. Firstly, they considered Swiss-Prot annotation
regardless of the fact that the function had been determined
experimentally or predicted and secondly, they have not remo-
ved the redundancy in training dataset. Han et al also used SVM
for predicting rRNA-, mRNA-, tRNA-, and all RNA-binding proteins
(Han et al., 2004). The predicted sensitivity reported for each
class of proteins was 94.1, 79.3, 94.1, and 97.8%, respectively. On
the other hand the specificity achieved for each group of non-
RNA-binding proteins, is 98.7, 96.5, 99.9 and 96.0%, respectively.
Similar to performance reported by Cai and Lin (2003) the
performance reported by Han et al is higher than our method.

Table 6. Sub-classification of RNA-binding proteins using PSSM-400 SVM approach

Thr. Sens. (%) Spec. (%) Accu. (%) MCC SVM_light learning parameters AUC

tRNA �0.30 75.88 76.98 76.70 0.49 J¼ 2; t¼ 2; g¼ 0.0001 0.82
mRNA 0.00 77.95 79.61 79.28 0.50 j¼ 5; t¼ 2; g¼ 0.0001 0.83
rRNA 0.40 89.93 90.22 90.14 0.77 j¼ 4; t¼ 2; g¼ 0.001 0.96

Thr¼ Threshold; Sens¼ Sensitivity; Spec¼ Specificity; Accu¼Accuracy; MCC¼Matthews correlation coefficient; AUC¼Area Under Curve.

Table 7. Specificity of different SVM sub-classificationmodels
on remaining two classes of RNA-binding proteins

Test protein binding class True negative Specificity (%)

tRNA-binding protein prediction SVM model
mRNA 47 73.44
rRNA 83 94.32

mRNA-binding protein prediction SVM model
tRNA 67 80.72
rRNA 83 94.32

rRNA-binding protein prediction SVM model
tRNA 76 91.57
mRNA 58 90.63

Table 8. Performance of different RBPs prediction methods
developed in this study using an independent dataset
(RNAiset1)

Sensitivity Specificity Accuracy MCC

PSSM-400 69.57 76.00 73.37 0.45
Hybrid1 73.91 76.00 75.15 0.49
Hybrid2 72.46 79.00 76.33 0.51

Hyrbid1 corresponds to method in which threshold limit of 30%
was used for RNA-binding protein prediction. Hybrid2 refers to the
method in which both lower (3%) and upper (30%) threshold
limits were used for prediction.
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However, Han et al also did not follow the established way
(making the dataset non-redundant, removing sequences whose
existence or function (here RNA-binding property) is not exp-
erimentally proven) of making dataset for a prediction method.
They have not specified the degree of similarity among training
dataset sequences. Rather they mentioned that all distinct
members in each group were used to construct positive samples
for training, testing, and independent evaluation of the SVM
classification system (Han et al., 2004). The structural and elect-
rostatic feature based method of Shazman and Gutfreund (2008)
was able to predict RBPs from NBP with very high accuracy. The
SVM model developed to classify between RBPs to NNBP
(non-nucleic acid binding protein chains) achieved 80%
sensitivity and 90% specificity (MCC, 0.67). They also developed
a SVM model to differentiate RBPs from NNBP having large
electrostatic patch with 80% sensitivity and 91% specificity (MCC,
0.72). Though the performance of Shazman’s method was very
high it is of limited utility due to the requirement of 3D structure,
which is not directly available for most of the sequences. As
described earlier, our method has achieved the maximum
accuracy of 81% using PSSM-400 SVMmodel, which is better than
that obtained (77.5%) by Yu et al. on the same dataset (Yu et al.,
2006). The main difference is the development of Hybrid1 and
Hybrid2 methods. Incorporating the RNA-binding residue pre-
diction of PPRINT further increased the accuracy to �83%.

Benchmarking of existing RBP prediction methods on
independent dataset

There is only one publicly available web-server for predicting
RBPs, which is based on the method developed by Han et al.
(2004). So, it would be interesting to benchmark the RNAPred
vis-à-vis SVMProt using an independent data. For this we have
submitted the RNAiset1 proteins to SVMProt. Out of 69 RBPs,
SVMProt correctly predicted 42 as RBPs with the sensitivity of
61%. Out of 100 NBPs, 94 were predicted correctly as NBP. This
shows that SVMProt has very high specificity of prediction.

Description of RNApred Web-server

Based on amino acid composition and PSSM-400 models and
hybrid method, we developed a web-server RNApred for
identifying RNA-binding proteins from amino acid sequences.
RNApred is freely accessible from http://www.imtech.res.in/
raghava/rnapred/. The common gateway interface (CGI) script
of RNApred is written using PERL version 5.03. The web-server is
hosted on a Sun Server (420E) under UNIX (Solaris 7) environ-
ment. In order to do prediction, the users have to provide protein
sequence in FASTA format. The server generates PSI-BLAST PSSM
and then converts it to PSSM-400 input vector for prediction. At
RNApred web-server there are three modes for RNA-binding
protein prediction. First mode takes amino acid composition
of submitted protein as input; second mode utilizes PSSM
generated during PSI-BLAST search (PSSM-400) of query protein
as input. The third option uses hybrid of PSSM-400 and PPRINT
(referred as Hybrid2 method in this manuscript).

DISCUSSION

RNAs in cells are associated with different RNA-binding proteins
in order to perform their functions. The RBPs influence the
structure and interactions of the RNAs and play critical roles in

their biogenesis, stability, function, transport, and cellular locali-
zation. Despite a very important role in cellular metabolism and
regulation, RBPs got lesser attention than DNA-binding proteins.
In the present work, we have developed SVM based methods for
identifying RNA-binding proteins using a systematic approach.
All modules developed during this work were based on a dataset
of 754 proteins containing equal number of RBPs and NBPs. It was
originally compiled by Yu et al. (2006) and contains proteins from
all branches of life (Table S1).
Each RBP contains some amino acids that bind with the RNA.

The RNA-binding residues should be more abundant in RBPs in
comparison to NBPs. Hence RBP can also be predicted indirectly
by RNA-binding residue prediction. Hence firstly we evaluated
our method PPRINT developed for predicting RNA-binding
amino acids in a protein. It was observed that this approach
worked well as we expected. Binding residue based prediction
approach can successfully discriminate between RBP and NBP;
however, the sensitivity was poor and specificity was very high
(Table 1). It was also observed that NBPs contain fewer binding
amino acids.
Similarity search method is one of the most common app-

roaches for predicting the function of a protein. In this method a
query protein is searched against a database of annotated
proteins and assigns the function of most similar target protein to
query protein. Similarity based approach is highly accurate if an
experimentally annotated homologous protein is found. We
evaluated the performance of commonly used similarity search-
ing tools, BLAST, and PSI-BLAST on our dataset using five-fold
cross validation. The performance of both BLAST and PSI-BLAT
was poor on our dataset, which indicates that the proteins in our
dataset have low similarity to each other (Table 2).
To annotate a sequence with unknown molecular function, a

biologist first search it against a sequence database such as
NCBI ‘nr’ or UniProt for homologous sequences using sequence
alignment methods BLAST or PSI-BLAST. On the basis of align-
ment score and e-value, homology between sequences is
inferred. If query sequence is found homologous to any experi-
mentally annotated database sequence then function of both
sequences is considered same. The real problem arises when no
homologous sequence is found during database searching. In
this case predictive methods (for example machine learning)
remains the only option. In other words, sequence similarity and
machine learning methods are useful in different phases of
sequence functional annotation. In the present work we used
sequence similarity methods on a small set of equal number of
binding and non-RNA binding proteins. The reason of using a
small dataset is the simplicity in comparison among different
methods of sequence functional annotation. Since performance
of all approaches was calculated on same dataset, we can
benchmark their strength and weakness without any biasing.
Further the aforementioned dataset represents all RNA-binding
proteins available in the sequence database. If BLAST can find a
significant hit by searching on the small dataset, then it would
also get when searched against full UniProt or NCBI nr databases.
Further absence of a significant hit with a RBP shows that BLAST/
PSI-BLAST will fail invariably even on a full-length sequence
database. We also considered our previously developed RNA-
binding amino acid prediction method PPRINT as an existing
method of RNA-binding protein prediction because it can also be
used for RBP prediction on the basis of RNA-binding amino acids.
In order to reduce the false positive predictions of PPRINT we
used higher threshold during prediction. As shown in Table 1, the
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PPRINT predicted very small number of RNA-binding residues in
RBPs, which is, even less in non-binding proteins. But as shown in
Table 1, we were able to predict nearly 78% RBPs. If we further
try to increase the sensitivity, the proportion of false positive
prediction will increase. Hence it was not logical to lower the
percentage of PPRINT predicted RNA-binding residues. So, in
further studies PPRINT prediction was only used as an initial filter
to discriminate between binding and non-binding protein.
Since accuracy achieved by existing methods (PPRINT, BLAST,

and PSI-BLAST) was poor we used the machine-learning tech-
nique, SVM for improving the accuracy. First, we developed SVM
modules using various compositions such as amino acid com-
position, dipeptide composition, and four-part amino acid
composition. Among different forms of compositions maximum
MCC of 0.60 was achieved with simple amino acid composition
(Table 3). It was contrary to previously reported fact that dipe-
ptide and four-part amino acid composition achieve better
accuracy due to greater information content (Bhasin and
Raghava, 2004a; Bhasin and Raghava, 2004b; Garg et al., 2005;
Kumar et al., 2006). Similar trend in MCC was also reported with
DNA-binding protein prediction method developed by our group
(Kumar et al., 2007b).
It has been reported in past that using evolutionary infor-

mation as input vector of SVM can drastically increase the
prediction accuracy (Kaur and Raghava, 2003b; Bhasin and
Raghava, 2004a; Kaur and Raghava, 2004a; Kaur and Raghava,
2004b; Garg et al., 2005; Xie et al., 2005; Kumar et al., 2007b;). We
extracted evolutionary information from the PSSM obtained from
PSI-BLAST search against NCBI ‘nr protein database’ and
normalized it into fixed length of 400 dimensional input vectors.
Evolutionary information in the form of PSSM was first used for
predicting the secondary structure of proteins (Jones, 1999). This
brought considerable increment in the prediction accuracy. It is
believed that PSSM contains more information than the single
sequence input because it also contains the information of other
residues at a position rather than giving the information of only a
single amino acid at a particular position. For the protein
secondary structure prediction no processing of PSSM was
required due to the fixed pattern size. In the present work,
prediction was done to the whole protein and not for a pattern.
Since, SVM works only on fixed length input, we processed the
L� 20 dimension PSSM (L¼ number of amino acids in protein)
into fixed length of 400 patterns by summing columns of
identical amino acids. Hence the PSSM-400 input should have
more information content than the amino acid composition. This
is the first study that used evolutionary information for predicting
RBPs. The MCC increased to 0.62 using PSSM profile (Table 3). This
result agrees with the observations reported in the literature that
PSSM provides more information than amino acids. However, in
the present work the difference between the performance of
amino acid composition and PSSM based SVMmodel (PSSM-400)
is small.
As shown in Table 1 the binding residue based prediction

approach achieved very high specificity, indicating the capability
of predicting RBPs without any single false prediction. In order to
benefit from high specificity we created two hybrid methods
combining PSSM-400 and RNA-binding residue prediction met-
hods. First, hybrid method (Hybrid1) was used to predict only RBP
at a threshold at which we have not found any false NBP
predicted as RBP. Using a threshold limit of 30%we observed that
MCC increased from 0.62 to 0.63 (Table 4). During evaluation of
PPRINT it was found that NBPs contain small number of binding

residues that means that fraction of binding residue can be useful
to screen out false positive prediction. Hence we developed a
second hybrid method (Hybrid2), which further increased the
MCC to 0.66 (Table 5).
The analysis on the results obtained with similarity search

methods BLAST and PSI-BLAST showed that the coverage was
quite low but the probability of correct prediction (fraction of
proteins correctly predicted to the class to which they actually
belong) was very high. This implies that if BLAST/PSI-BLAST is
used along with generalized SVM based prediction method,
accuracy should increase. Hence, we constructed a hybrid pre-
diction method by combining BLAST and PSI-BLAST with PSSM-
400 based SVM model (Hybrid3). In contrary to our expectation
we did not observe improvement in accuracy (Table S3). There-
after we also incorporated the binding residue prediction
method into Hybrid3 to construct Hybrid4. Again no improve-
ment was observed with Hybrid4 (Table S4). In order to find out
the reason behind the failure of Hybrid3 and Hybrid4, we
analyzed the performance of PSSM-400 SVM model on proteins,
which got hit during BLAST and PSI-BLAST searches at e-value
threshold of 1e-4 (129 and 131, respectively). It was found that
out of 129 and 131 RBPs identified with BLAST and PSI-BLAST,
respectively, 122 and 124 were also correctly predicted by SVM. It
should be noteworthy that similarity search methods correctly
identified 123 and 125 RBPs. On the other hand, out of 16 NBPs
obtained with BLAST and PSI-BLAST, 12 were correctly predicted
as NBPs by SVM. It shows that performance of SVM is very good
with proteins, which are very similar to each other. Machine-
learning methods like SVM are used from long time to develop
prediction method that can be used even for proteins examples
that do not share any similarity with each other because it models
the data without considering the similarity between the samples.
It also gave us insights behind a minor increase in sensitivity and
slight decrease in specificity when similarity search methods
were combined with SVM (Table S3). The findings of Table S5 can
also be extrapolated to the reason of not getting any significant
advantage of combining similarity search methods with RNA-
binding residue prediction method and PSSM-400 based SVM
model in Hybrid4 (Table S3 and S4).
Depending upon the category of RNA to which RBP binds, we

also developed a multi-class SVM for predicting rRNA-, mRNA-,
and tRNA-binding proteins (Table 6). We observed that the
performance of predicting tRNA- and mRNA-binding proteins
was approximately the same, but accuracy of rRNA-binding
protein was about 10% point greater than the remaining two
classes. We did not comprehend the reason for this difference as
our method is an amino acid sequence based method and there
is no exclusive RNA-binding domain for any of the three classes of
RBPs. It may have occurred due to presence of some higher
dimensional protein sequence feature that is common in tRNA-
and mRNA-binding proteins, but different in rRNA-binding
proteins. We also evaluated the prediction accuracy of SVM
model trained with one group on another group of RNA-binding
proteins. From the cross-prediction we observed that all three
SVM models showed very high specificity (Table 7).
We benchmarked the performance of Hybrid2 method

(called as RNApred) in two independent ways using two
different datasets (see ‘‘Materials and Methods’’ for details). We
found that on both datasets, performance was nearly equal
with five fold cross-validation (Table 8 and supplementary file
2). This showed that RNApred is robust enough to work in real
life condition.
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On searching the literature we noticed four other existing
methods for discriminating RBPs. Threemethods were developed
to predict RBPs on the basis of amino acid sequence alone. The
first method was developed by Cai and Lin (2003). They reported
85.74% accuracy in RBPs prediction, which is probably over-
prediction (see ‘‘comparison with existing methods’’). In their
work, Han et al (2004) reported accuracy higher than our method.
But in their work, they also have not adopted the standard
process of dataset creation. They took all the proteins, which
optimally represent each family of RNA-binding proteins and
used for training and testing. The availability of many redundant
proteins should have enhanced the accuracy. The third method
was developed by Yu et al (2006), which achieved the accuracy of
77%. Using the same dataset our method achieved the accuracy
of 83%. Recently, a structure-based prediction method was also
developed by Shazman and Gutfreund, which is of limited use
due to the requirement of 3D structure (Shazman and Mandel-
Gutfreund, 2008).
We have also benchmarked the performance of only publicly

available RBP prediction server, SVMProt using RNAiset1 dataset.
We found that although sensitivity was lower, but specificity was
very high. When we critically analyzed the prediction results of
SVMProt, we found that it actually gave the probability of each
protein belonging to a particular class. It means it lists the name
of probable class to which the query protein may belong. For
example out of the 42 true positives prediction, 8 were very low in
the list. We have even found cases in which a protein was
predicted to have ‘‘Plant defences property’’ as well as viral coat
protein. So, in true sense, we can claim that RNAPred has no lower
specificity than SVMProt.

CONCLUSIONS

The RNA-binding proteins play very important role in gen-
e-regulation and expression. Hence prediction of RBPs can be an
important step toward understanding the gene regulatory mec-
hanism and their interactions. We developed a highly accurate
method, RNApred for identifying RNA-binding proteins. Firstly,
we evaluated the performance of similarity search methods and
RNA-binding amino acid prediction method. Since both were not
very effective in prediction, we developed SVM based method
that requires only amino acid sequence as input. Maximum
accuracy was achievedwith PSSM-400 based SVMmodel. We also
developed different hybrid methods using the similarity search,
binding residue approach and PSSM-400 SVM model. It was
observed that the hybrid method developed using binding
residue prediction approach and PSSM-400 SVM model showed
the best performance. A web-server RNApred has also been
developed to make the prediction method available to the
scientific community. We hope that RNApred would help to
speed up the rate of protein function prediction.
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