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Nuclear receptors are key transcription factors that
regulate crucial gene networks responsible for cell
growth, differentiation, and homeostasis. Nuclear re-
ceptors form a superfamily of phylogenetically related
proteins and control functions associated with major
diseases (e.g. diabetes, osteoporosis, and cancer). In this
study, a novel method has been developed for classifying
the subfamilies of nuclear receptors. The classification
was achieved on the basis of amino acid and dipeptide
composition from a sequence of receptors using support
vector machines. The training and testing was done on a
non-redundant data set of 282 proteins obtained from
the NucleaRDB data base (1). The performance of all
classifiers was evaluated using a 5-fold cross validation
test. In the 5-fold cross-validation, the data set was ran-
domly partitioned into five equal sets and evaluated five
times on each distinct set while keeping the remaining
four sets for training. It was found that different sub-
families of nuclear receptors were quite closely corre-
lated in terms of amino acid composition as well as
dipeptide composition. The overall accuracy of amino
acid composition-based and dipeptide composition-
based classifiers were 82.6 and 97.5%, respectively.
Therefore, our results prove that different subfamilies
of nuclear receptors are predictable with considerable
accuracy using amino acid or dipeptide composition.
Furthermore, based on above approach, an online web
service, NRpred, was developed, which is available at
www.imtech.res.in/raghava/nrpred.

The availability of sequence data for different genomes in
recent years has increased the demand for computational tools
that can recognize new proteins from this data. The recognition
of nuclear receptors is crucial, because many of them are po-
tential drug targets for developing therapeutic strategies for
diseases like breast cancer and diabetes (2). Nuclear receptors
are one of the most abundant classes of transcriptional regu-
lators, which regulate diverse functions during reproduction,
metabolism, and development. Nuclear receptors function as
ligand-activated transcriptional factors, providing a direct link
between the signaling molecules that control these processes

and transcriptional responses (3). The nuclear receptors share
a common structural organization. All nuclear receptors con-
sist of six distinct regions or domains as follows: highly variable
N-terminal and C-terminal regions (A/B and F domains) that
contain one or more transactivation regions; a central, well
conserved DNA binding domain (C); a non-conserved hinge
region (D) that contains a nuclear localization signal (NLS),
and a moderately conserved ligand binding domain (E) (4). The
DNA binding domain (C region) of nuclear receptors consists of
two zinc fingers, which act as a signature for this superfamily
(5). The presence of these zinc fingers facilitates the recognition
of nuclear receptors from a genome sequence using simple
similarity-based search tools like BLAST and FASTA (6–7). On
the other hand, the major limitation of these search tools is
that they are not able to recognize the subfamilies of nuclear
receptors. The nuclear receptors have been classified and as-
signed seven subfamilies according to the NucleaRDB data-
base, which include thyroid and estrogen hormone-like recep-
tors (1). However, classification of these subfamilies by using
phylogeny-based or BLAST-based tools is difficult due to a
scarcity of data for some subfamilies. Thus, there is a crucial
need for methods that will enable the automated assignment of
nuclear receptor subfamilies.

In this report, we have made an attempt to develop a method
for recognizing the subfamilies of nuclear receptors. We were
able to design a method for recognizing the four subfamilies of
nuclear receptors: (i) thyroid hormone-like (TR, RAR, and
ROR); (ii) HNF4-like (HNF4, RXR, TLL, Coup, and USP); (iii)
estrogen-like (ER, ERR, GR, MR, PR, and AR); and (iv) Fushi
tarazu-F1-like (SFI, FTF, and FTZ-F1). Sequences for the other
three subfamilies are not available in significant number
(�10). The classification and assignment of nuclear receptors
to various subfamilies was done on the basis of amino acid
composition and dipeptide composition. Amino acid and dipep-
tide compositions are simplistic approaches for producing pat-
terns of fixed length from the protein sequences of varying
length (8). In the past, amino acid composition has been used to
predict the structural class of domains and the subcellular
localization of proteins (9–11). The dipeptide composition is
also widely used to encapsulate the global information and give
a fixed pattern length of 400. In the past, dipeptide composition
has been used for predicting the subcellular localization of
proteins (11) and for fold recognition (12, 13). In this study,
support vector machines (SVMs)1 were applied to classify nu-
clear receptors. SVMs are a relatively new type of statistical
learning method that have proven to be particularly attractive
for biological analysis due to their ability to handle large data
sets and avoid overfitting. SVMs have been shown to perform
well in multiple areas of biological analysis, including classifi-
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cation of G-protein-coupled receptors (GPCRs) (14) and enzyme
families (15), analysis of protein functions and types (16–17),
and prediction of RNA-binding proteins (18). The overall accu-
racy of amino acid and dipeptide composition-based classifiers
are 82.6 and 97.5% respectively. The Matthew’s correlation
coefficient (MCC) of the dipeptide composition-based classifier
is 0.96, which is significantly higher in comparison to that of
the amino acid composition-based classifier. MCC is a better
parameter for evaluating the performance of a method, as it
accounts for both over- and under-predictions. The perform-
ance of both classifiers has been estimated through a 5-fold
cross-validation test. It was found that various subfamilies of
nuclear receptors are correlated with amino acid or dipeptide
composition, implying that the subfamilies of nuclear receptors
are predictable to a highly accurate extent if good training data
can be established. The method is available via the World Wide
Web at www.imtech.res.in/raghava/nrpred.

MATERIALS AND METHODS

Data Set—The data for four subfamilies of nuclear receptors was
obtained from the NucleaRDB data base available at www.receptor-
s.org/NR/ (1). All entries not marked as fragments were extracted from
the data base by the text-parsing method. The initial data set had 577
sequences belonging to four subfamilies of nuclear receptors. Redun-
dancy was reduced so that no sequence had �90% sequence identity
with any other sequence in the data set, using PROSET software (19).
The final data set contains 282 sequences belonging to different sub-
families of nuclear receptors as shown in Table I.

Design and Implementation of the Prediction System—The prediction
of subfamilies of nuclear receptors is a multi-class classification prob-
lem. In this case, the number of subfamilies of nuclear receptors was
four. To handle this multi-class situation, we designed a series of binary
SVMs. For N class classification, N SVMs were constructed. The ith
SVM was trained with all samples of the ith subfamily being labeled as
positive, and the samples of all other subfamilies being labeled as
negative. The SVMs trained in this way were referred to as 1-v-r SVMs
(9). In this classification approach, each of the unknown proteins will
achieve four scores. An unknown protein will be classified into the
subfamily that corresponds to the 1-v-r SVM with the highest output
score.

Support Vector Machine—The SVMs were implemented using freely
downloadable software, SVM_light, written by T. Joachims (20). This
software enables the users to define a number of parameters as well as the
choice of inbuilt kernel, such as a radial basis function (RBF) or a poly-
nomial kernel (of given degree). In this study, all of the parameters of a
kernel were kept constant, except for the regulatory parameter C. The
experimentation was conducted by using various types of kernels such as
polynomial and radial base function. The SVMs require a fixed number of
inputs for training, thus necessitating a strategy for encapsulating the
global information about proteins of variable length in a fixed length
format. The fixed length format was obtained from protein sequences of
variable length using amino acid and dipeptide composition.

Amino Acid Composition—Protein information can be encapsulated
in a vector of 20 dimensions, using amino acid composition of the
protein. In the past, this approach has been used for predicting the
subcellular localization of proteins (9, 21). The amino acid composition
is the fraction of each amino acid type within a protein. The fractions of
all 20 natural amino acids were calculated by using Equation 1,

Fraction of aai �
total number of amino acids of type i

total number of amino acids in protein
(Eq. 1)

where i is an specific type of amino acid (aa).
Dipeptide Composition—The dipeptide composition was used to

transform the variable length of proteins to fixed length feature vectors.
Dipeptide composition has been used earlier by Grassmann et al. (12)

and Reczko and Bohr (13) for the development of fold recognition
methods (12–13). We adopted the same dipeptide composition-based
approach in developing an SVM-based method for predicting subcellu-
lar localization of eukaryotic proteins (11). The dipeptide composition
gave a fixed pattern length of 400. Dipeptide composition encapsulates
information about the fraction of amino acids as well as their local
order. It was calculated using Equation 2,

Fraction of dep(i) �
total number of dep(i)

total number of all possible dipeptides
(Eq. 2)

where dep(i) is one dipeptide i of 400 dipeptides.
Evaluation of Performance—The performance all classifiers was

evaluated through 5-fold cross validation. In 5-fold cross validation, the
data set was partitioned randomly to five equally sized sets. The train-
ing and testing of each classifier was carried out five times using one
distinct set for testing and the other four sets for training. The perform-
ance of classifiers was evaluated by measuring accuracy and the MCC
for each subfamily of nuclear receptors, as described by Hua and Sun (9)
and shown below in Equations 3 and 4,

Accuracy(x) �
p(x)

exp(x)
(Eq. 3)

MCC(x) �
p(x)n(x) � u(x)o(x)

�(p(x) � u(x))(p(x) � o(x))(n(x) � u(x))(n(x) � o(x))
(Eq. 4)

where x can be any subfamily of nuclear receptors, exp(x) the number of
sequences observed in subfamily x, p(x) the number of correctly pre-
dicted sequences of subfamily x, n(x) the number of correctly predicted
sequences not of subfamily x, u(x) the number of under-predicted se-
quences, and o(x) the number of over-predicted sequences.

Reliability Index (RI)—The determination of prediction reliability is
important when using machine learning techniques to assign subfam-
ilies of nuclear receptors. The reliability index (RI) was assigned on the
basis of difference (�) between highest and second highest value of
SVMs in multi-class classification (22–23). RI provides an insight into
the accuracy/reliability of prediction. Equation 5, shown below,

RI � �INT (�*5/3) � 1 if 0 � � � 4
5 if � � 4 (Eq. 5)

demonstrates how the RI was defined for each sequence.

RESULTS AND DISCUSSION

Artificial intelligence-based techniques such as SVM and the
neural network are elegant approaches for the extraction of
complex patterns from biological sequence data. These tech-
niques are highly successful for residue state prediction, where
fixed window/pattern length is used (24). The major limitation
of artificial intelligence techniques is that they need pattern/
input units of fixed length. In this study, amino acid composi-
tion and dipeptide composition were used to transform the
variable lengths of proteins to fixed length patterns. The clas-
sifiers were developed using the support vector machines, be-
cause it was shown in the past that SVM is better at classifying
the biological data in comparison with the artificial neural
network (25–26).

The results of 5-fold cross validation of amino acid composi-
tion-based and dipeptide composition-based classification are
summarized in Table II. The accuracy of the five different sets
used in the evaluation of the classifier during 5-fold cross-
validation are shown in Table S1 of the supplementary mate-
rial (at www.imtech.res.in/raghava/nrpred/help.html#bottom
and in the on-line version of this article). The information
about the number of true positive (P), true negative (N), false
positive (O), and false negative (U) sequences predicted in each
set used during 5-fold cross-validation are illustrated in Table
S2 of the supplementary material. Table II illustrates that the
best results achieved kernel parameters. The overall accuracy
and MCC of the amino acid composition-based classifier for
classifying the four subfamilies of nuclear receptors was 82.6%
and 0.74, respectively. It proved that subfamilies of nuclear

TABLE I
The number of sequences belonging to each nuclear receptor subfamily

Nuclear receptor subfamilies No. of protein sequences

Thyroid hormone-like 114
HNF-4-like 72
Estrogen-like 75
Fusi-tarazu-like 21
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receptors correlated with amino acid composition and can be
easily distinguished on this basis.

Recently, Chou and Cai demonstrated that the order of se-
quence along with amino acid composition (pseudo-amino acid
composition) improved the accuracy of the classification of pro-
teins (27, 28). Therefore, we also used pseudo-amino acid com-
position to classify nuclear receptors with better accuracy and
reconfirm the role of sequence order on classification accuracy.

First, pseudo-amino acid composition was generated using
amino acid composition with “sequence-order-correlated” fac-
tors. The different pseudo-amino acid compositions were gen-
erated using sequence-order-correlated factors of different or-
ders (1st to 35th rank), as described by Chou and Cai (27). The
overall performance of the classifiers generated by using pseu-
do-amino acid in classifying the four subfamilies of nuclear
receptors is shown in Table III. The results depicted show that
the overall MCC (0.86) and accuracy (90.7%) of the pseudo-
amino acid based approach is better in comparison with that of

the conventional amino acid composition-based approach. The
results also demonstrate that accuracy as well as MCC in-
creases up to the 30th rank (pseudo-amino acid composition
generated by merging sequence-order-correlated factors from
the 1st to the 30th rank with amino acid composition) and
becomes nearly constant afterward. Thus, a remarkable im-
provement in predicting the subfamilies of nuclear receptors
was achieved using pseudo-amino acid composition.

In a similar manner, a pseudo-amino acid composition based
on the hydrophobicity correlation factor was generated to see
the effect of biochemical properties on classification. Pseudo-
amino acid composition based on this approach was derived up
to the 30th rank from our data set. The calculation of the
hydrophobicity-correlated factor was done by formulas from
Chou and Cai (27). The hydrophobicity values of amino acids
were taken from Argos et al. (29). The performance of pseudo-
amino acid composition generated using the amino acid com-
position and hydrophobicity correlation factor is demonstrated

TABLE III
The performance of different pseudo-amino acid composition-based approaches in classifying the subfamilies of the nuclear receptors

The pseudo-amino acid composition was derived as described by Chou and Cai (27). The rank specifies the sequence order-coupling mode along
the sequence. For example, the 1st rank reflects the coupling mode between most contiguous residues, and the 5th ranks specify the coupling mode
between all of the 5th most contiguous residues. The rank “up to 5th” means it was developed using pseudo-amino acid composition generated by
merging five sequence-order-correlated factors with amino acid composition (amino acid composition � (1st � 2nd � 3rd � 4th � 5th) sequence
order factors. ACC denotes accuracy.

Pseudo-amino acid composition (sequence-order-correlated factor (a) � amino acid composition)

Rank
Thyroid-like HNF-like EST-like FUS-like Overall

ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

Up to 5th 87.7 0.81 80.5 0.76 93.3 0.86 80.9 0.82 86.8 0.81
Up to 10th 87.7 0.81 80.5 0.72 93.3 0.88 80.9 0.87 86.8 0.81
Up to 15th 88.6 0.79 79.1 0.74 94.6 0.90 80.9 0.89 87.1 0.81
Up to 20th 89.4 0.82 81.9 0.77 94.6 0.90 80.9 0.87 88.2 0.83
Up to 25th 90.3 0.82 84.7 0.78 96.7 0.93 76.1 0.86 89.5 0.84
Up to 30th 92.1 0.85 86.1 0.84 97.3 0.93 76.1 0.84 90.7 0.86

Pseudo-amino acid composition (hydrophobicity-correlation factor (b) � amino acid composition)

Rank
Thyroid-like HNF-like EST-like FUS-like Overall

ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

Up to 5th 88.6 0.75 65.3 0.60 88.0 0.79 57.1 0.68 80.1 0.71
Up to 10th 87.7 0.75 62.5 0.60 90.7 0.79 66.7 0.72 80.5 0.72
Up to 15th 90.4 0.78 66.6 0.60 88.0 0.80 61.9 0.74 81.5 0.73
Up to 20th 88.6 0.78 70.8 0.66 90.7 0.81 71.4 0.81 83.3 0.75
Up to 25th 85.9 0.76 72.2 0.66 90.6 0.82 71.4 0.75 82.5 0.74
Up to 30th 86.8 0.74 65.2 0.60 89.3 0.79 71.4 0.84 80.8 0.72

Pseudo-amino acid composition (a � b � amino acid composition)

Rank
Thyroid-like HNF-like EST-like FUS-like Overall

ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

Up to 5th 86.8 0.79 80.5 0.73 90.6 0.83 71.4 0.81 85.0 0.79
Up to 10th 88.6 0.76 63.8 0.61 93.3 0.83 66.7 0.75 81.0 0.73
Up to 15th 91.2 0.78 76.8 0.66 90.6 0.85 66.7 0.81 85.5 0.77
Up to 20th 90.3 0.80 77.7 0.74 94.6 0.89 76.1 0.86 87.2 0.81
Up to 25th 87.7 0.77 72.2 0.67 92.0 0.84 76.1 0.86 84.0 0.76
Up to 30th 89.7 0.78 69.4 0.65 92.0 0.84 76.1 0.86 84.1 0.76

TABLE II
The prediction accuracy (ACC) and MCC of both amino acid and dipeptide composition-based classifiers with

the radial basis function (RBF) type of kernel function

Nuclear receptors
Amino acid composition RBF

kernel (� � 500; C � 5)a
Dipeptide composition RBF

kernel (� � 3)a

ACC MCC ACC MCC

% %

Thyroid hormone-like (TR, RAR, ROR) 87.7 0.75 100 0.98
HNF4-like (HNF4, RXR, TLL, COUP, USP) 68.0 0.62 95.8 0.96
Estrogen-like (ER, ERR, GR, MR, PR, AR) 89.3 0.83 98.7 0.96
Fushi tarazu-F1-like (SF1, FTF, FTZ-F1) 80.9 0.89 85.3 0.92
Overall 82.6 0.74 97.5 0.96

a Results were obtained through 5-fold cross-validation.
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in Table III. The performance of the classifier based on this
approach was slightly lower than that seen with the amino
composition-based approach.

Finally, a pseudo-amino acid composition was generated us-
ing sequence-order factor and hydrophobicity-correlated factor
with amino acid composition. The performance of classifier
based on this approach up to the 30th rank is shown in Table
III. The 30th rank reflects the coupling mode between all of the
30th most contiguous residues. The performance shown in Ta-
ble III was obtained using 5-fold cross-validation. The best
results (accuracy � 87.2 and MCC � 0.81) obtained using this
approach were significantly better in comparison with those
obtained with the amino acid composition-based approach.
These results proved that pseudo-amino acid composition could
provide more information about a protein sequence, resulting
in the improvement of prediction accuracy.

On the other hand, the performance of the dipeptide compo-
sition-based approach was better as compared with that of the
pseudo-amino acid composition-based approach. The most
likely reason for the lesser performance of the pseudo-amino
acid composition-based approach may be that it considers only
identical pairs of amino acids and ignores non-identical pairs.
The dipeptide composition based approach considers all of the
contiguous pairs of amino acids whether they are identical or
non-identical.

To further improve prediction accuracy, a classifier based on
the conventional dipeptide composition of protein was devel-
oped. The dipeptide encapsulates the global information of the
amino acid fraction and the local order of amino acids. Thus,
dipeptide composition is a better feature as compared with
amino acid composition alone. The overall accuracy and MCC of
a dipeptide composition-based classifier were 97.6% and 0.97,
respectively, which were significantly higher in comparison
with the accuracy and MCC of the amino acid composition-
based classifier. The detailed performance of the classifier on
each set that was used for evaluation during 5-fold
cross-validation is shown in Tables S1 and S2 of the supple-
mentary material (www.imtech.res.in/raghava/nrpred/help.
html#bottom and in the on-line version of this article). The
overall accuracy of the dipeptide composition-based classifier
was nearly 15% greater than that of the amino acid composi-
tion-based classifier. The overall MCC of the dipeptide compo-
sition-based classifier was 0.97, which was significantly higher
than the MCC of the amino acid composition-based classifier.
The detailed accuracy and MCC of dipeptide composition based
classifiers in recognizing different subfamilies of nuclear recep-
tors are shown in Table II. The results demonstrate that the
thyroid hormone-like receptor subfamily is classified more ac-
curately (accuracy � 100% and MCC � 0.98) in comparison
with other subfamilies. The most likely reason for such results
may be due to the large size of the data set related to thyroid
hormone-like receptors. It is expected that the success rate for
the other subfamilies can be further enhanced by improving
the training data by adding more new proteins belonging to the
subfamilies defined here.

These results also illustrated that the dipeptide composition-
based classifier is able to recognize the subfamilies of nuclear
receptors more accurately as compared with amino acid com-
position-based classifier alone. This suggests that different
subfamilies of nuclear receptors are correlated dipeptide com-
position considerably.

Reliability Index—To bring further confidence to the user
about the reliability of the prediction, the reliability index of
both amino acid composition-based prediction and dipeptide
composition-based prediction was also calculated. The RI as-
signment provides information about the certainty of predic-

tion for a particular sequence. The reliability index was as-
signed according to the difference between the highest and the
second highest 1-v-r SVM output score (9, 11). If a sample was
predicted to have a large positive score for a class of nuclear
receptors (away from the average score), the sample had a
greater probability of belonging to that class. The reliability
index is the key tool for considering receptors with high pre-
diction accuracy (30). The curves shown in Fig. 1 answer the
question of how reliable is the prediction for sequences labeled
with a particular reliability index. For example, in the case of
amino acid composition-based classifiers, the expected accu-
racy of sequences with RI � 5 is 100%, with 32.2% of the
sequences of the whole data set having RI � 5. The expected
accuracy at different RI values is shown by plotting a curve
between the expected accuracy and the RI (Fig. 1A). A similar
curve is also plotted for dipeptide composition-based classifiers
(Fig. 1B). The dipeptide composition-based classifier predicted
84.2% sequences with RI � � 3. These sequences (RI � � 3) are
nearly 100% correctly predicted. These results suggest that our
method is able to predict the subfamilies of nuclear receptors
with high accuracy. Thus, this classifier will complement the
existing similarity search-based methods like BLAST and
FASTA in recognizing the nuclear receptor proteins with high
accuracy.

Conclusion—We have developed the NRpred server for rec-
ognizing the subfamilies of nuclear receptors proteins. This
method, in association with a similarity search tool, can be
used for automated annotation of genomic data. The study also

FIG. 1. A, expected accuracy of an amino acid composition-based
classifier with a reliability index equal to a given value. The fraction of
sequences that are predicted at a given reliability index are also shown
on the x-axis. B, expected accuracy of a dipeptide composition-based
classifier with a reliability index equal to a given value. The fraction of
sequences that are predicted at a given reliability index are also shown
on the x axis.
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proves that there is a direct correlation between the features of
the proteins (amino acid and dipeptide composition) and the
subfamilies of nuclear receptors. The establishment of such
methods will speed up the pace of identifying subfamilies of
nuclear receptors and, thus, will facilitate drug discovery for
inflammatory diseases or osteoporosis.

Description of Server—NRpred runs as a CGI server, writ-
ten in PERL and operating under Solaris 420R. The interface
of the server is straightforward and intuitive. The server
accepts the protein sequence in any standard format like
EMBL, GCG, FASTA, or in plain text format. The server uses
the Readseq program to read the input sequence. The server
provides the option of prediction either on the basis of amino
acid composition or dipeptide composition. After analysis, the
result will be displayed in a user-friendly format. The result
provides information about the predicted subfamily of nu-
clear receptors, its reliability index, and the expected accu-
racy. The server and related information is available from
www.imtech.res.in/raghava/nrpred.

Any information from experimental biologists regarding the
different subfamilies of nuclear receptors is most welcome. In
the future, more information about different subfamilies of
nuclear receptors will be collected to establish a high quality,
large data set, because the performance of any knowledge-
based method is dependent on the quality and quantity of data.
This data set will be used to further update and increase the
performance of method. The users are encouraged to give their
feedback about any experimental conformation or falsification
of the predictions.
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