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Background: Toxicity Prediction is one of the crucial issues as various industrial chemicals are linked with acute and
chronic human diseases like carcinogenicity, mutagenecity. Thus, there is a growing need to risk assessment of these
chemicals. Tetrahymena pyriformis is used as a model organism to accessed the environmental fate of a chemical to
address the toxicity potential of organic chemicals. Our study is based on large diverse dataset of 1208 compounds taken
from an international open competition ICANNO9 was organized for aqueous toxicity prediction of chemical molecules
against Tetrahymena pyriformis. Results: This study described the development of Quantitative Structure Toxicity Rela-
tionship (QSTR) model for the prediction of aqueous toxicity against T. pyriformis. Firstly, model developed on 1002
V-life calculated molecular descriptors shows a R/R? 0.874/0.76 with RMSE 0.523. Further, selection of relevant descrip-
tors leads to only 9 descriptors, which shows a performance R/R? 0.846/0.71 with RMSE 0.574 while on blind dataset
0.756/0.570 with RMSE 0.570 respectively. Second, model developed on CDK based 178 descriptors shows correlation
(R) 0.876/0.85, R? 0.77/0.72 with RMSE 0.518/0.556 on training and blind dataset respectively. Next, model developed
on selected 6 descriptors from CDK shows nearly equal performance with R 0.866/0.823, R?> 0.75/0.66 with RMSE
0.541/0.609 on training and blind dataset respectively. Finally, a hybrid model based on selected 17 descriptors from both
V-life and CDK shows significant improvement in performance on both training and blind dataset with R 0.89/0.85, R?
0.79/0.72 with RMSE 0.491/0.557 respectively. It was also observed that Molecular mass (M.W.), and XLogP have very
high correlation with toxicity of chemical molecules, it suggests that size and solubility of chemical molecules play major
role in toxicity. Our results suggest that it is possible to develop web service for computing toxicity of chemicals using
non-commercial software. Conclusions: Our present study demonstrates that performance of a QSTR model depends
on the quality/quantity of descriptors as well as on used techniques. Based on these observations, we developed a web
server ToxiPred (http://crdd.osdd.net/raghava/toxipred), for environmental risk assessment of small chemical compounds.
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INTRODUCTION

Toxicity assessment for a given compound using toxico-
logical experiment is a mammoth task due to cost and
time.""2 A number of biological interactions and differ-
ent environment with the living organisms are responsible
for accurate determination of toxicity, but data that quite
often are not available.> A generally accepted strategy for
overcoming the shortage of experimental measurements is
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the analysis based on Quantitative Structure—Activity Rela-
tionships (QSAR).*3 Computational tools fasten the envi-
ronmental assessment process by significantly reduce the
cost of experimental.

In past several QSAR/QSTR based models have been
developed for toxicity prediction.'* In year 2011, also
a method for classification of toxic and non-toxic com-
pounds was developed on a large diverse dataset.'
The most critical limitation of existing QSAR studies
is there low performance on blind/independent dataset
despite its high accuracy on training data set. This is
due to over optimization or over training on dataset
used for training. Therefore, it is important to use
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standard cross-validation criteria for testing, training
and independent validation. Thus, there is a need to
develop fast and robust in-silico model for predicting
toxicity of chemicals. In order to address this prob-
lem, the highly diverse and large dataset taken from
International Conference on Artificial Neural Networks
(ICANNO09) benchmarking the performance of toxic-
ity prediction methods (http://www.cadaster.eu/node/65)
was used.

The purpose of this study is, firstly to develop a highly
robust and accurate QSAR model for the prediction of
aqueous toxicity of small chemical molecules, and sec-
ondly to develop software/server for public use. For this
purpose, we have used CDK'® and Vlife software’s for
calculating descriptors of chemicals and Weka/RapidMiner
for feature selection. This study will be useful for experi-
mental biologist for predicting the toxicity of a compound
against T. pyriformis.

MATERIAL AND METHODS

Dataset

In this study, total 1213 molecules have been used for
developing QSAR models for aqueous toxicity prediction,
obtained from http://www.cadaster.eu/node/67 (ICANNO9
competition web site). MOPAC based optimized 3D struc-
ture of these molecules are available in mol2 format along
with pIGC50 values (logarithm of 50% growth inhibitory
concentration). There was an error in 5 molecules for
descriptors calculations therefore the overall study is based
on 1208 compounds rather than 1213 compounds. The
dataset was divided randomly into training and blind set
with 1108 and 100 molecules respectively. Further, In
order to explore the diversity of toxicity dataset, their toxi-
city value and four molecular descriptors molecular weight
(Mol. wt.), XlogP, nHBA (no. of hydrogen bond accep-
tors), nHBD (no. of hydrogen bond donors) calculated
using CDK libraries for each compounds were analyzed
by radar chart (Fig. 1).

Molecular Descriptors

In this study, QSTR models were developed using descrip-
tors computed from two software’s namely CDK, and
Vlife. Vlife allows computing ~1002 type of molec-
ular descriptors that can be broadly categorized into
structural, thermodynamic, electronic, molecular surface
based descriptors. We also computed 178 molecular
descriptors using Chemistry Development Kit (CDK)
library that includes topological descriptor, geometric
descriptor, molecular properties and Eigen values based
indices, physiochemical and electronic descriptors. The
CDK is a Java based open source library for structural
chemo- and bioinformatics projects. Our group had ear-
lier implemented this library in the form of a standalone
as well as a web server WebCDK, which is available at
http://crdd.osdd.net:808 1/WebCDK/.
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Figure 1. Depict the radar chart of four simple molecular
descriptors: molecular weight (MW), nHBDon (no. of hydro-
gen bond donars). nHBAcc (no. of hydrogen bond acceptors),
XLogP and toxicity (pIGC50) on entire dataset with each color
line represent a compound.

Descriptor Selection

In a QSAR study, selection of relevant molecular descrip-
tors from descriptor space is most important and tricky
step to build an efficient predictable model. Most of
molecular descriptor programs compute a large set of
molecular descriptors that include highly correlated and
irrelevant descriptor. There are number of techniques
which allow selecting appropriate descriptors. Among
them only a small subset of descriptors are statistically sig-
nificant for QSAR based model development. To search a
set of significant descriptors, we adapted different feature
selection methods such as CfsubsetEval module with best-
fit algorithm, F-stepping approach, and removal of highly
correlated descriptors.

Cross-Validation Techniques

The performance of the QSAR model was evaluated
using five-fold cross-validation technique. In five-fold CV,
the data set is randomly divided in five partitions of
similar size. Out of these five sets four sets are used
for training and the remaining fifth set for testing. The
model was rebuilt five times, once for each fold ensur-
ing that all compounds were used for testing once. In
order to check the general ability of model, an inde-
pendent test set is most commonly used. Therefore, in
this study we have also used an independent dataset
of 100 compounds to evaluate the performance of our
models.

QSAR Model Construction

QSAR methodology quantitatively correlates the struc-
tural molecular properties (descriptors) with functions
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(biological activities) for a set of compounds by means
of linear or non-linear statistical methods.'”? In the
present study, we have used both linear (MLR) and
non-linear (SMO) statistical methods for prediction
of aqueous toxicity of small chemical molecules in
T. pyriformis. Brief description of these methods is given
below.

Non-Linear Statistical Method

WEKA-3.6.0 Based Method

The machine-learning package WEKA 3.6.0% is a col-
lection of machine-learning algorithms, which supports
in several standard data mining tasks, data pre-
processing, clustering, classification, regression, visual-
ization, and feature selection. Here, we used SMOreg

(Sequential Minimization ~Optimization)*® algorithms
implemented in WEKA to predict the end point
toxicity.

Linear Statistical Method

Multiple Linear Regression (MLR)

MLR tries to model the relationship between two or more
independent descriptors and dependent variable such as y,
by fitting a linear regression equation to observed data with
corresponding parameters (constants) and an error term. In
MLR, every value of the independent variable is associated
with a value of the dependent variable. The multiple linear
relations between y and the {x,} is defined by following
equation:

y:ﬁ0+B1xl+B2x2+"'+Bp'xp+8(x)

Where y is a dependent variable, {x,, x, x,} are the
independent variables, {B;, B, f,) is the slop (beta coef-
ficient) for particular independent variable and &(x) is a
random noise (e.g., measurement errors). In current study,
MLR equation has obtained through R package, was used
for QSAR modeling.

Evaluation Parameter

Once a regression model was constructed, statistical sig-
nificance of models was assessed using the following sta-
tistical parameters:

1 n
RMSE =,/ = Y (ToX*" — ToX™™")?
nig

R =
(” > TOX™ ToXP™ — 3" TOX™ Y TOXpred)
X (\/” Z(TOX’M)2 — (Z TOX3t)?
12
\/n Z(Toxpred)z - (Z TOXact)2>
R —1 S (ToX™ — Toxved)?

Y (ToX* —ToX)

Where n is the size of test set, ToxP™ is the predicted
pIGC50 and Tox* is the actual pIGC50, is the average of
the toxicity of test set, RMSE is the root mean squared
error between actual and predicted pIGC50 of compounds,
R is the Pearson’s correlation coefficient between actual
and predicted value, R? (Coefficient of determination) is
the statistical parameter for proportion of variability in
model.

RESULTS

Diversity Analysis of Data Set

The diversity in the dataset is very important for robust
QSTR model development. In order to explore the chemi-
cal domain of total dataset, a radar chart analysis was per-
formed on total 1209 compounds. The radar chart shows
that Mol. wt. Varies from 32.03 to 483.59; XlogP from
241 to 6.5; no. of hydrogen bond donar range from 0
to 5, no. of hydrogen bond acceptor ranged from 0 to 6;
and toxicity value from 2.67 to 3.34. As shown Figure 1,

Table I. Performance of models developed on different set of descriptors calculated using various software packages.
Train Blind
Software packages Descriptors Methods R R? RMSE R R? RMSE
178 PLS 0.876 0.77 0.518 0.850 0.72 0.556
CDK 11 SMOPuk 0.867 0.75 0.537 0.816 0.65 0.620
11 MLR 0.853 0.73 0.559 0.799 0.64 0.633
6 SMOPuk 0.866 0.75 0.541 0.823 0.66 0.609
6 MLR 0.851 0.72 0.563 0.802 0.64 0.628
1002 PLS 0.874 0.760 0.523 0.867 0.750 0.530
V-Life 20 SMOPuk 0.849 0.720 0.570 0.781 0.6 0.665
9 SMOPuk 0.846 0.71 0.574 0.756 0.57 0.693
9 MLR 0.831 0.69 0.596 0.785 0.61 0.655
31 SMOPuk 0.88 0.77 0.516 0.83 0.69 0.586
Hybrid-1 17 SMOPuk 0.89 0.79 0.491 0.851 0.72 0.557
17 MLR 0.867 0.75 0.534 0.826 0.68 0.594
J. Transl. Toxicol. 1, 21-27, 2014 23
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the entire dataset highly diverse and cover large chemical source as well as commercial). Performance of various
space.?* The radar chart are highly similar to Cheng et al. models, trained and blind dataset is described below.
2011 showing the applicability of dataset.'

V-Life Descriptors Based Model

In order to develop model, we removed the molecules
from V-life for which CDK was unable to calculate
In order to evaluate the performance of different soft- the descriptors for making the data composition uni-

ware’s, we have developed QSAR model on different  form throughout the study. In this study a PLS model
sets of descriptors calculated by various software’s (open was developed using V-life calculated 1002 descriptors

Performance of Linear Statistical Method (MLR)
and Non-Linear Statistical Method (SMO)
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Figure 2. Showing the scatter plots of four different models with actual value on X-axis and predicted value on Y-axis. The
blue color circle represents the training set and green color triangle for blind dataset.
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Table II.

Correlation between selected Vlife descriptors calculated using Vlife software.

Descriptors Mol.Wt slogp chiV5chain SdSE-index Ipc

MMFF_21 MMFF_46 MMFF_51 T_2_N_0 T_N_Br_3 T_N_Br_6 MDEN-23

Mol.Wt 1 0.63 —0.04 0.01 —-0.07 -0.28
slogp 1 0.01 0.12 —-0.06 —0.36
chiV5chain 1 0.03 0 —0.04
SdSE-index 1 0 —0.07
Ipc 1 0.05
MMFF_21 1
MMFF_46

MMFF_51

T 2 N_O

T_N_Br_3

T_N_Br_6

MDEN-23

0 0.03 0.32 0.16 0.04 0.08
0.02 0.02 0.1 0.05 0.02 0.05
—0.01 0 —0.03 —0.01 —0.01 —0.01
—0.01 0 0.24 —0.02 —0.01 0.05
0 0 —0.01 0 0 0
—0.02 —0.01 —0.15 —0.05 —0.02 —0.03
1 0 0.08 —0.01 0 0.41
1 —0.01 0 0 0
1 0.08 0.04 0.15
1 —0.01 0.09
1 0

1

in WEKA and achieve nearly equal performance (R?)
0.76/0.75 on training and blind dataset receptively
(http://crdd.osdd.net/raghava/toxipred/supple.php). A sec-
ond model on 20 descriptors selected using CfsubsetEval
module of WEKA shows R/R* 0.849/0.72 and 0.781/0.6
with RMSE 0.570/0.665 on training and blind dataset
receptively. A third model using SMO with Puk-kernel on
9 best-selected descriptors on training and blind dataset
shows correlation (R) 0.846/0.756, R*> 0.71/0.57 with
RMSE 0.574/0.693 (Table 1, Fig. 2(A)) respectively. The
MLR based model on selected 9 descriptors shows bet-
ter performance as compared to non-linear WEKA based
model (http://crdd.osdd.net/raghava/toxipred/supple.php).

CDK Descriptors Based Model

The second model developed on train dataset and tested
on blind dataset (randomly created) shows R,../R2..
0.876/0.77, Ryjina/Rijina 0-85/0.72 on training and blind
dataset using PLS in WEKA. We have developed a QSAR
model on 11 significant descriptors selected using Cfsub-
setBval achieved Ry,/Rpiq 0.867/0.816, R /R:. .
0.75/0.65 with RMSE 0.537/0.620 on training and blind
dataset receptively (Table I). We further number of
descriptors from 11 to 6 and developed a third model,
shows nearly same performance (in term of R?) as shown
in (http://crdd.osdd.net/raghava/toxipred/supple.php), and

Figure 2(B).

Hybrid Model

The hybrid model developed on randomly selected
blind dataset was also shows better performance on

Table lll. Correlation between selected CDK descriptors.
ATSc3 BCUTc-11 FNSA-1 RPSA GRAV-3 XLogP
ATSc3 1 0.13 —0.11 0.18 -0.05 -0.07
BCUTc-1I 1 0.18 —0.33 0.26 0.3
FNSA-1 1 0.12 0.45 0.09
RPSA 1 —-0.11 —-0.48
GRAV-3 1 0.58
XLogP 1

J. Transl. Toxicol. 1, 21-27, 2014

minimum of only 17 relevant descriptors (for detail
see  (http://crdd.osdd.net/raghava/toxipred/supple.php)).
First, hybrid model on 31 descriptors shows R/R?
0.88/0.77 on training and 0.83/0.69 on blind dataset
(Fig. 2(C)). A second model on 17 descriptors shows a
better performance with R 0.89/0.85, R*> 0.79/0.72 with
RMSE 0.491/0.557 (Table I, Fig. 2(D)) on training and
blind dataset respectively.

Interpreting Best QSAR Model

As shown in (http://crdd.osdd.net/raghava/toxipred/supple.
php), models developed using all three techniques MLR,
PLS and SMO performed equally well. It is also observed
that hybrid model developed using descriptors obtained
from two or more than two software perfom better than
model developed using descriptors obtained an individ-
ual software. It is clear from results that free software of
descriptor calculation are sufficiently powerful for devel-
oping QSTR models. The descriptor selection is impor-
tant for developing QSTR model and for improving the
performance of model. In this study, we also used free
software even for feature selection. This study shows that
linear model is performing more or less equal to non-
linear models. From the bunch of thousands of descriptors,
only few statistically relevant descriptors were selected
and used for the model development. Our study also sug-
gests that among the vast of molecular descriptors molec-
ular weight, and xlogP plays significant role in toxicity
prediction of chemical compounds. From the Table III,
Table 1V, Table V it was found that descriptors selected
in this study shows very little correlation with each other
and more with toxicity value. The positive correlation
with mol. wt. and solubility (xLogP) are following the
two of the four parameter famous lipinski rule of five.
The XlogP descriptor identified in our study also identi-
fied in past by Schuurmann et al. 2003 as important in
predicting the toxic molecules. The possible reason may
be that with increasing molecular weight of a compound
its solubility decrease and therefore, that particular com-
pound may persist in the body of 7. pyriformis and become
toxic.
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Table IV. Correlation between selected V-life and CDK
descriptors.

CDK
Descriptors ATSc3 BCUTc-11 FNSA-1 RPSA GRAV-3 XLogP

Mol.Wt. —0.08 023 047 —0.19 0.86 0.64
chiVschain 0.03  0.09 —0.04 0.01 —0.03 —0.03
SdSE-index 0.03 017 002 —0.12 007 0.15

lpc  —002 -005 -004 004 —0.1 -0.06

Vdife MMFF_21 —0.22 049 -022 0.09 —0.37 —0.3

MMFF_46 —0.01 0.02 0.01 —-0.04 0.02 -0.01
MMFF_51 —-0.08 -0.05 -0.01 —-0.03 0.05 0.06
T_2_ N_O0O —-0.08 0.29 0.55 -0.24 04 0.16
T_N_Br_3 —-0.02 0.1 0.16 —0.04 0.07 0.03
T_N_Br_6 —0.02 0.1 0.03 —-0.04 0.02 0.01
MDEN-23 —0.02 0.04 0.05 -0.06 0.09 0.03

Web Server

One of the major challenges for researchers working in
the field of toxicology is to predict the toxicity of a
chemical compound. Best of our knowledge, two free soft-
wares namely T.E.S.T (Toxicity Estimation Software Tool)
and OpenTox are available for toxicity prediction.?>2® In
order to complement existing effort for providing service
to community, we developed a web server ‘“ToxiPred”
(http://www.crdd.osdd.net/raghava/toxipred), for predict-
ing toxicity of molecules. We integrate JME molecu-
lar editor’” in ToxiPred that allows user to draw their
molecules of choice. This server is launch using Apache
under Linux (Red Hat) environment. The common gate-
way interface (CGI) script of ToxiPred is written using
PERL version 5.03. This is a user friendly web server
that allows to predict pIGC50 of a small chemical against
Tetrahymena pyriformis.

Table V. Correlation between descriptors and PIGC50 values.

No. Descriptor name Correlation (PIGC50) P-value
1 Mol.Wt. 0.7 0.011
2 chiV5chain —0.03 0.93
3 SdSE-index 0.22 1.72E-13
4 Ipc —0.08 0.30
5 MMFF_21 -0.39 1.47e-0.9
6 MMFF_46 0.08 1.96E-05
7 MMFF_51 0.05 0.67
8 T 2 N_O 0.38 0.008
9 T_N_Br_3 0.12 0.003
10 T_N_Br_6 0.06 0.020
11 MDEN-23 0.1 0.969
12 ATSc3 —-0.14 8.78E-11
13 BCUTc-11 0.32 0.755
14 FNSA-1 0.39 7.32E-12
15 RPSA —0.31 0.222
16 GRAV-3 0.7 7.97e-0.7
17 XLogP 0.75 <2e-16
26

DISCUSSION

In this study, we have developed several models for the
prediction of pIGCS50 of small organic chemical molecules
in Tetrahymena pyriformis. Our present study suggests
that descriptors are keys for any QSAR modeling but it
is not always possible that all relevant descriptors were
implemented in single software. Thus it is important to
use descriptors obtained from different software for devel-
oping a model. As shown in our result section our hybrid
model based on selected set of descriptors obtain from dif-
ferent software performed better than models developed
using descriptors of individual software. After analyzing
selected descriptors from different software, we found that
molecular weight, and xlogP shows very high correlation
(>=0.70) with pIGC50 value. In order to provide the
facility to scientific community, we developed a webserver
“ToxiPred” to predict toxicity of chemical compounds.
We hope that present model will aid in the area of drug
designing.
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